
Analysis of Passive End-to-End Network Performance

Measurements

A Dissertation
Presented to

The Academic Faculty

by

Charles Robert Simpson, Jr.

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Electrical and Computer Engineering

Georgia Institute of Technology
May 2007

Copyright c© 2006 by Charles Robert Simpson, Jr.

Analysis of Passive End-to-End Network Performance

Measurements

Approved by:

Dr. George F. Riley, Advisor
Asst. Professor, School of ECE
Georgia Institute of Technology

Dr. Henry L. Owen
Professor, School of ECE
Georgia Institute of Technology

Dr. John A. Copeland
Professor, School of ECE
Georgia Institute of Technology

Dr. Biing-Hwang (Fred) Juang
Professor, School of ECE
Georgia Institute of Technology

Dr. Richard M. Fujimoto
Professor, College of Computing
Georgia Institute of Technology

Date Approved: 14 December 2006

To my loving parents,

Bobby and Sandra Simpson,

without whose love, support, and encouragement I would have never made it this far.

And to my sister,

Jodi (Dee Dee),

who first taught me how to sit through class (and the value of education).

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the NETI@home users, without whose participa-

tion there would be no NETI@home project and research at all.

I would like to thank my advisor, Dr. George Riley, for his help and guidance in the

completion of my studies. I would also like to thank my committee for their diligent and

thoughtful review.

The love and support given to me by my family has always been wonderful and this

dissertation, as with much throughout my life, would not have been possible without them.

I have also received lots of support from my lab-mates, especially Dheeraj Reddy,

throughout this time, and they deserve many thanks!

My friend and former roommate Julian Grizzard has also been very helpful, especially

with those late-night ponderings.

Elizabeth Campell deserves many thanks, as her work in the Georgia Institute of

Technology Office of Institute Communications and Public Affairs helped to publicize

NETI@home and increase the number of users.

I would also like to thank everyone else who has helped with the successful completion

of this dissertation.

Finally, I would like to acknowledge that all of my blessings are the work of God.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS OR ABBREVIATIONS xii

SUMMARY . xiv

CHAPTER 1 INTRODUCTION . 1

1.1 NETI@home . 2

1.2 Network Security . 3

1.3 Network Behavior . 3

1.4 User Behavior . 3

1.5 Dissertation Outline . 4

CHAPTER 2 BACKGROUND . 5

2.1 Measurement Infrastructures . 5

2.2 Network Security . 7

2.3 Network Behavior . 8

2.4 User Behavior . 8

CHAPTER 3 THE NETI@HOME NETWORK MEASUREMENT IN-

FRASTRUCTURE . 9

3.1 Description of NETI@home Software . 9

3.1.1 libpcap . 12

3.1.2 Privacy Levels . 12

3.1.3 NETITray . 13

3.1.4 Installation . 15

3.1.5 Update Alerts . 15

3.1.6 NETILogParse . 15

3.1.7 NETIMap . 16

3.2 Network Statistics Collected . 17

3.2.1 Per User Report . 17

v

3.2.1.1 NETI@home Version . 17

3.2.1.2 Arrival, Start, and Send Times 17

3.2.1.3 Operating System . 18

3.2.1.4 Unique Identifier . 18

3.2.1.5 Privacy Level . 18

3.2.1.6 Geographical Information 19

3.2.1.7 Datalink Type . 19

3.2.1.8 Packet Counts . 19

3.2.2 All Analyzed Flows . 19

3.2.2.1 IP Addresses . 19

3.2.2.2 Local Netmask . 20

3.2.2.3 Times . 20

3.2.2.4 Ports . 20

3.2.2.5 Checksums . 20

3.2.2.6 Number of Fragmented Packets 20

3.2.2.7 Minimum and Maximum TTL Values 21

3.2.2.8 Number of Don’t Fragment Flags 21

3.2.3 Transmission Control Protocol . 21

3.2.3.1 Number of Packets . 21

3.2.3.2 Number of Bytes . 21

3.2.3.3 Number of Acknowledgment Packets 21

3.2.3.4 Number of Duplicate Acknowledgment Packets 22

3.2.3.5 Number of Double Duplicate Acknowledgment Packets . . 22

3.2.3.6 Number of Triple Duplicate Acknowledgment Packets . . 22

3.2.3.7 Number Beyond Triple Duplicate Acknowledgment Packets 22

3.2.3.8 Number of URG Flags . 22

3.2.3.9 Number of PUSH Flags 23

3.2.3.10 Number of ECN ECHO Flags 23

3.2.3.11 Number of CWR Flags . 23

3.2.3.12 SACK Permitted . 23

3.2.3.13 Minimum, Maximum, and Average Advertised Window Sizes 23

vi

3.2.3.14 Number of Packet Retransmissions 24

3.2.3.15 Number of Bytes Retransmitted 24

3.2.3.16 Number of Inactivity Periods 24

3.2.3.17 Minimum, Maximum, Average, and SYN Round Trip Times 24

3.2.3.18 Connection Establishment Method 25

3.2.3.19 Connection Closure Method 25

3.2.3.20 Number of Packets Received In and Out of Order 25

3.2.3.21 Maximum Segment Sizes 25

3.2.3.22 Minimum, Maximum, and Average Packet Sizes 26

3.2.3.23 Window Scaling . 26

3.2.3.24 Number of Failed Connections 26

3.2.4 User Datagram Protocol . 26

3.2.4.1 Number of Packets . 26

3.2.4.2 Number of Bytes . 26

3.2.4.3 Minimum, Maximum, and Average Packet Sizes 27

3.2.5 Internet Control Message Protocol 27

3.2.5.1 ICMP Type . 27

3.2.5.2 ICMP Code . 27

3.2.6 Internet Group Management Protocol 27

3.2.6.1 Multicast IP Address . 28

3.2.6.2 IGMP Version . 28

3.2.6.3 IGMP Type . 28

3.2.6.4 Maximum Response Time 28

3.2.6.5 Packet Directionality . 28

3.3 Implementation of NETI@home Software 28

3.3.1 NETI@home Client . 29

3.3.2 Windows . 30

3.3.3 Linux, Unix, Mac OS X, and Others 32

3.3.4 NETI@home Server . 33

3.3.5 NETIMap . 34

3.4 Distribution of NETI@home Software . 35

vii

3.4.1 SourceForge . 35

3.4.2 neti.gatech.edu . 36

3.4.3 Publicity . 36

CHAPTER 4 NETWORK SECURITY . 38

4.1 Flow-Based Observations from NETI@home and Honeynet Data 38

4.1.1 Overview . 38

4.1.1.1 NETI@home Data . 39

4.1.1.2 Georgia Tech Honeynet Data 39

4.1.1.3 Observing Malicious Traffic 40

4.1.2 Network Flow Analysis . 40

4.1.3 Data Observations . 41

4.1.3.1 Number of Packets Per Flow 42

4.1.3.2 TCP Port Histogram . 43

4.1.3.3 IP Address Space . 46

4.2 Potential Covert Communication . 49

4.3 NETI@home Server Attacks . 51

CHAPTER 5 NETWORK BEHAVIOR . 52

5.1 General Observations . 53

5.2 Network Locality . 55

5.3 Frequency and Use of Network Address Translation and Private IP Addresses 57

5.4 Adoption and Use of Selected Protocol Flags and Options 59

5.5 Use of the DNS Infrastructure . 60

CHAPTER 6 END-USER BEHAVIOR . 62

6.1 Methodology . 63

6.2 Experimental Results . 64

6.2.1 Bytes Sent . 64

6.2.2 Bytes Received . 65

6.2.3 User Think Time . 67

6.2.4 Consecutive Contacts . 69

6.2.5 Contact Selection . 72

viii

6.3 Simulation Results . 75

CHAPTER 7 DATA DISSEMINATION . 79

7.1 Anonymization Woes . 79

7.2 Data Dissemination . 81

CHAPTER 8 CONCLUSIONS . 83

8.1 Conclusions . 83

8.2 Future Work . 86

APPENDIX A — NETI@HOME STRUCTURES 90

REFERENCES . 105

VITA . 111

ix

LIST OF TABLES

Table 1 Popular TCP ports (by flows) . 54

Table 2 Popular UDP ports (by flows) . 54

Table 3 Popular TCP ports (by bytes) . 54

Table 4 Popular UDP ports (by bytes) . 55

Table 5 Initial TTL values . 57

Table 6 Hop count variation . 57

Table 7 TCP option capability . 60

Table 8 Variation in average and maximum response times when using HTTP traf-
fic model presented in this chapter (with flows sending zero bytes) 76

Table 9 Variation in average and maximum response times when using HTTP traf-
fic model presented in this chapter (without flows sending zero bytes) . . 77

Table 10 Variation in average and maximum response times when using HTTP traf-
fic model presented in [44] . 77

x

LIST OF FIGURES

Figure 1 NETITray screenshot. 13

Figure 2 NETITray menu screenshot. 13

Figure 3 NETITray properties window screenshot. 14

Figure 4 NETIMap screenshot. 16

Figure 5 NETI@home as a Windows service screenshot. 31

Figure 6 CDF of the number of packets per TCP flow. 42

Figure 7 Honeynet TCP port histogram. 44

Figure 8 NETI@home TCP port histogram. 45

Figure 9 IP address space distribution by number of flows. 47

Figure 10 Remote IP address and contacted local TCP port. 49

Figure 11 Anomalous echo by percentage. 50

Figure 12 NETI@home user count by operating system. 53

Figure 13 NETI@home user count by region. 53

Figure 14 CDF of average hop counts. 58

Figure 15 CDF of bytes sent. 66

Figure 16 CDF of bytes received. 68

Figure 17 CDF of user think time to same IPs. 70

Figure 18 CDF of user think time to differing IPs. 71

Figure 19 CDF of number of times an IP is contacted consecutively. 73

Figure 20 CDF of relative frequency of server visits over a one year period. 74

Figure 21 Network topology used for testing traffic models in simulation. 75

xi

LIST OF SYMBOLS OR ABBREVIATIONS

API application programming interface.

ARP address resolution protocol.

ASCII American standard code for information interchange.

CAIDA cooperative association for internet data analysis.

CDF cumulative distribution function.

CPU central processing unit.

CVS concurrent versioning system.

DHCP dynamic host configuration protocol.

DIMES distributed internet measurements and simulations.

DNS domain name system.

DoS denial of service.

EAPOL extensible authentication protocol over lan.

ECN explicit congestion notification.

FTP file transfer protocol.

GB gigabyte.

GNU GNU’s not UNIX.

GPL general public license.

GTNetS georgia tech network simulator.

GUI graphical user interface.

HTTP hypertext transfer protocol.

HTTPS hypertext transfer protocol secure.

ICMP internet control message protocol.

IETF internet engineering task force.

IGMP internet group management protocol.

IP internet protocol.

IPv6 internet protocol version 6.

IPX internetwork packet exchange.

xii

ISP internet service provider.

KB kilobyte.

LDAP lightweight directory access protocol.

MB megabyte.

MD5 message-digest algorithm 5.

MSS maximum segment size.

MTU maximum transmission unit.

NAT network address translation.

NETI@home network intelligence at home.

NIMI national internet measurement infrastructure.

NSIS nullsoft scriptable install system.

POP post office protocol.

RFC request for comments.

RPM RPM package manager.

RTT round trip time.

SACK selective acknowledgement.

SDK software development kit.

SETI@home search for extraterrestrial intelligence at home.

SSH secure shell.

TB terabyte.

TCP transmission control protocol.

TTL time to live.

UDP user datagram protocol.

VoIP voice over internet protocol.

WWW world wide web.

xiii

SUMMARY

As the use of networks is increasingly becoming an important part of daily life,

the measurement and analysis of these networks is becoming important as well. This dis-

sertation first introduces a network measurement infrastructure designed to collect these

measurements from end-hosts on the Internet. Then, utilizing these measurements, studies

are made on the behavior of the network and network users as well as the security issues

affecting the Internet. Finally, the public release of the collected data is discussed.

The NETI@home network measurement infrastructure is a distributed approach to pas-

sively gathering end-to-end network performance measurements. The client is designed to

run on virtually any machine connected to the Internet and measurements are reported to

a server located at the Georgia Institute of Technology. This tool gives researchers much

needed data on the end-to-end performance of the Internet, as measured by end-users.

NETI@home’s basic approach is to sniff packets sent from and received by the host and

infer performance metrics based on these observed packets. NETI@home users are able to

select a privacy level that determines what types of data are gathered, and what is not

reported. NETI@home is designed to be an unobtrusive software system that runs quietly

in the background with little or no intervention by the user, and using few resources.

We conduct a flow-based comparison of honeynet traffic, representing malicious traffic,

and NETI@home traffic, representing typical end-user traffic. We present a cumulative

distribution function of the number of packets for a TCP flow and learn that a large portion

of these flows in both datasets are failed and potentially malicious connection attempts.

Next, we look at a histogram of TCP port activity over large time scales to gain insight

into port scanning and worm activity. One key observation is that new worms can linger on

for more than a year after the initial release date. We go on to look at activity relative to

the IP address space and observe that the sources of malicious traffic are spread across the

allocated range. Finally, we discuss other security-related observations including suspicious

xiv

use of ICMP packets and attacks on our own NETI@home server.

We present some observations and conclusions based on the behavior of the network

and networking protocols, from the unique perspective of the end-user. An analysis of hop

counts, based on observed TTL values, is presented. The frequency and use of network

address translation (NAT) and the private IP address space are studied. Finally, several

other options and flags of various protocols are analyzed to determine their adoption and

use by the Internet community.

The simulation of computer networks requires accurate models of user behavior. To this

end, we present empirical models of end-user network traffic derived from the analysis of

NETI@home data. There are two forms of models presented. The first models traffic for

a specific TCP or UDP port. The second models all TCP or UDP traffic for an end-user.

These models are meant to be network-independent and contain aspects such as bytes sent,

bytes received, and user think time. The empirical models derived in this study can then

be used to enable more realistic simulations of computer networks and are implemented in

GTNetS.

Finally, we further discuss our approaches to anonymizing the dataset and how these

anonymized data and their associated analysis tools will be distributed.

xv

CHAPTER 1

INTRODUCTION

The Internet has become an increasingly essential part of modern life. To accommodate

this growth and increased interest, much research needs to be completed on the behavior

of the Internet and Internet users as well as the overall performance of this vast global

network. In response to this need, network measurements have become an important topic

in Internet research.

The area of network measurements has recently become a major focus for those who

wish to have an understanding of the traffic patterns of the Internet. The analysis of these

measurements has led to improved models for traffic flows, file sizes, burst sizes, and many

other complex characteristics of the Internet. Such measurements have implications for

the performance of networking protocols and operating system protocol stacks, the study

of malicious network traffic, and the modeling and simulation of networks. Most of the

sampling techniques for this data have come either from active measurements (ping [53])

or from localized passive measurements (tcpdump [34]). It has been documented that active

measurements introduce bias into these measurements, and many claim that this bias is

sufficiently large to cause some collected measurements to not be representative of actual

Internet traffic [5, 48]. As for the passive measurements that have been conducted, they are

only able to analyze a small portion of the Internet and cannot give a good representation

of the end-user experience as they are only collected from a limited number of vantage

points. It is important to be able to collect measurements from the perspective of the

end-user because such a perspective gives an excellent insight into the “real” use of the

network. Thus, there is a need for the study of large-scale, end-to-end, passive network

measurements.

The objective of this research is to analyze passive end-to-end network performance

measurements to obtain a better understanding of network activity. Specifically, there are

1

three key areas that are to be investigated: network security, network behavior, and user

behavior. Each of these three characteristics is vital to understanding the nature of the

Internet.

To complete this investigation, the NETI@home dataset is heavily analyzed, as are other

datasets when necessary. The NETI@home infrastructure’s unique end-user perspective

aids in all three of these areas and provides an insight that would be otherwise much more

difficult, if not impossible.

1.1 NETI@home

We introduced the NETI@home (NETwork Intelligence at home) software package, a dis-

tributed network monitoring infrastructure whose aim is to passively capture measurements

from end-hosts on the Internet, to address the need for large-scale, end-to-end network mea-

surements [68, 72]. Capturing measurements from end-hosts gives us a unique perspective

on the behavior of both the network and network users. NETI@home is designed to run on

end-user computers with a variety of operating systems and to require little or no interven-

tion by the user. It collects an assortment of network measurements from these machines

and then sends the results to the Georgia Institute of Technology for analysis.

Another major issue for the large-scale collection of passive end-to-end network mea-

surements is the privacy of the end-users. Any collection done on an end-user’s system must

not invade his or her privacy in any way. Should privacy be inadvertently violated, at the

very least it would spell the end for such a large-scale collection system.

For more information on the NETI@home project, please see my Master’s Thesis [69]

as well as several NETI@home related publications including [27, 71, 72].

With thousands of users strewn across the globe, we believe we can leverage the volume

and quality of the NETI@home data to provide a better understanding of the state of the

global Internet.

2

1.2 Network Security

As the Internet has grown from its infancy, it has reached a stage where security concerns

have become a considerable problem. Today’s Internet is plagued by a plethora of worms,

viruses, malware, spam, and other malicious traffic. Utilizing network measurements enables

researchers to study the growth and spread of this malicious activity, as well as investigate

the origins of these problems.

1.3 Network Behavior

The end-hosts that make up the Internet run a variety of operating systems, each with

its own somewhat unique network protocol stack. The differences in these protocol stacks

can have a significant impact on the interoperability of Internet end-hosts. Further, many

protocol stacks lag far behind the research community and the IETF when implementing

improvements to networking protocols. Finally, as with any complex piece of software,

operating system network protocol stacks are plagued by bugs. By utilizing the observa-

tions and analyses of network measurements, these issues can be identified and potentially

corrected.

1.4 User Behavior

The simulation of computer networks has become a popular method to evaluate character-

istics of these networks across a wide range of topics, including protocol analysis, routing

stability, and topological dependencies, to name a few. However, for these simulations to

yield meaningful results, they must incorporate accurate models of their simulated compo-

nents.

One such component is end-user traffic generation. This component should be network-

independent so that it can be used in a wide variety of simulation configurations without

dependency on the simulated environment. These traffic models should be updated fre-

quently, using recent measurements, to accurately reflect the changing nature and uses of

the Internet. Further, such measurements should represent the heterogeneous connection

methods and diverse locations of Internet users.

3

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 first presents work related to this dissertation as well as other relevant back-

ground information.

Next, Chapter 3 describes the NETI@home network measurement infrastructure, the

key to the collection of needed measurements for this dissertation. The measurements

collected by NETI@home are discussed as are the privacy settings, implementation, and

distribution of the software.

Chapter 4 presents observations and analyses related to network security. This is pri-

marily accomplished by comparing and contrasting data from the NETI@home project to

those collected by the Georgia Tech Honeynet project.

Then, Chapter 5 presents observations and analyses related to the behavior of the net-

work. This chapter includes aspects related to the performance and routing stability of

network connections, from the perspective of end-users running the NETI@home software.

The utilization of NAT and various protocol flags and options are also discussed.

Chapter 6 presents a study of the behavior of end-users and their usage of the network.

Network independent empirical models are derived based on this behavior and then used in

simulation.

Chapter 7 discusses the release of the data collected by NETI@home. Such data will

prove useful for researchers. Accompanying the data are the tools developed to study the

data for this dissertation.

Finally, Chapter 8 presents our conclusions. Several areas of future work are also dis-

cussed.

Appendix A details the various structures used by all versions of NETI@home, in RFC

format.

4

CHAPTER 2

BACKGROUND

2.1 Measurement Infrastructures

There are several projects whose aim is to collect and distribute network measurements. In

this section we attempt to categorize these projects. However, because of the sheer number

of such projects, a complete and updated list is not provided here.

One key distinction between network measurement approaches is whether they are active

or passive. Currently, the NETI@home project collects only passive measurements, that is,

measurements that do not inject network traffic and try to minimize the impact of their

actions on the measured phenomenon. Active measurements [15, 58], on the other hand,

directly interact with the system they are attempting to measure. These measurements

typically inject network traffic, such as probe packets. Passive measurements [23, 38, 82] do

not inject any traffic into the network; they merely monitor traffic on the network and infer

measurements from the observed traffic. Several studies have compared active and passive

measurements [5, 48], with both methods having advantages and disadvantages.

Active measurements have been used since the early days of the Internet. Some popular

active measurement tools are ping [53] and traceroute [32]. While active measurements

provide meaningful data in some cases, there are many measurements that cannot be fea-

sibly made using active techniques, such as accurate statistics on packet loss [5]. Active

measurements can also introduce bias into the measured system, since they actually inject

packets, and thus interact with, the measured traffic.

Passive measurements, on the other hand, have the goal of minimally affecting the

measured network. The most popular passive measurement tools are sniffer-based tools

such as tcpdump [34] and Ethereal [14], which actually sample every packet that is seen on

the link (in promiscuous mode) or every packet that is sent from or received by the host

that is sniffing (without promiscuous mode). Using passive measurements, one is able to see

5

the actual users’ experiences if the passive measurements are made at the end-hosts. Other

forms of passive measurements observe the network at a point that is between the two end-

hosts. Two such proposed systems are OC3MON [82] and IPMON [23]. In addition, many

studies have analyzed Internet traffic from a variety of points, studying different metrics

such as round-trip times (RTTs), available bandwidth, packet loss, and various aspects

of protocols such as TCP (receiver window sizes, throughput, time to live values, etc.).

Internet Service Providers (ISPs) also collect many network measurements that would be

useful to the research community for analysis [23, 82]. However, most ISPs are reluctant to

release such information since it could potentially expose problems in their own networks

or violate users’ privacy [52].

In addition to being active or passive, many measurement infrastructures specialize

in the types of measurements that they collect. We have identified three basic types of

measurement infrastructures: general purpose monitoring infrastructures, security-related

monitoring infrastructures, and network measurement monitoring infrastructures.

The first class, general purpose monitoring infrastructures, collects measurements that

can be used for both security-related research and network measurement-related research.

The most basic type of general purpose measurement is the use of passive network traces,

such as those collected using libpcap [33]. Many institutions, researchers, and network

administrators collect traces. These traces are usually limited to the collector’s own net-

work. One of the early network monitoring infrastructures, which falls into this class of

general purpose monitoring infrastructures, is Vern Paxson’s National Internet Measure-

ment Infrastructure, NIMI [58]. NIMI utilizes an active approach, taking measurements

between specialized nodes placed strategically throughout the Internet. However, if this

infrastructure can ever be fully put in place, it will still be unable to give an entirely accu-

rate representation of the end-user experience. Further, it suffers from the unwillingness of

ISPs to install such measurement devices on their networks. Other infrastructures of note

are SATURNE [15] (active), OC3MON [82] (passive), IPMON [23] (passive), and CAIDA’s

CoralReef [38] (passive). This class also includes the NETI@home project.

6

The second class of monitoring infrastructures, those related to security, collects mea-

surements used to identify and track malicious activity on the Internet. One basic approach

is the use of honeynets [61, 78], machines placed on the Internet that have no other purpose

than to record the traffic they receive, which largely consists of malicious activity. A differ-

ent approach is CAIDA’s Network Telescope project [49], which monitors an unused portion

of the IP address space. This traffic, much like the traffic to honeynets, largely consists

of malicious activity. One of the larger and more distributed security-related monitoring

infrastructures is the Internet Storm Center [81]. The Internet Storm Center consists of a

large number of independent monitoring systems such as honeynets, which aggregate their

data, allowing a much larger picture of the malicious activity on the Internet.

Finally, the remaining class of monitoring infrastructures, those specializing in network

measurements, collects measurements to further research into network design, operation,

and performance. One of the more popular such projects is CAIDA’s Skitter [73]. Skitter

actively probes the Internet to analyze network topology and performance with measure-

ments such as traceroute and ping. Two recent projects with competing aims have also been

developed to actively map the Internet with traceroute-like activity, the DIMES Project [19]

and Traceroute@home [84], and are based on end-user participation much like NETI@home.

2.2 Network Security

Much research has been accomplished on studying Internet worms and their behavior. Work

has been accomplished on characterizing and looking at the trends of various worms [39, 86].

Further, a detailed study of the spread time, algorithms, and damage caused by recent

worms has been conducted. For example, Shannon et al. give an in-depth look at the

Witty worm in [65], and Moore et al. give an in-depth look at the Slammer worm in [50].

Both of these worms have been observed in the NETI@home dataset as well as in other

datasets studied such as those from the Georgia Tech Honeynet [24]. Data shows that these

worms’ lingering effects are still active.

CAIDA uses its previously mentioned Network Telescope, which consists of a full /8

network to observe worms, DoS attacks, network scanning, and other malicious activity

7

[49]. Finally, the also previously mentioned Internet Storm Center provides users and

organizations with warnings against possible new threats seen on the Internet [81].

2.3 Network Behavior

The study of end-hosts, network protocols, and operating system behavior has received

much attention in the research literature. Among some of the more famous studies are

those related to the performance and modeling of protocols such as TCP [47, 56].

Among protocol flags and options that have been studied, one of the more studied is the

IP fragmentation option. Several authors have recommended the almost total abandonment

of packet fragmentation and have studied the adoption of this idea, including [37, 66].

2.4 User Behavior

The need for accurate simulation models was discussed in [22]. Several other studies have

discussed modeling of either application-specific [4, 8, 10, 11, 75] or general [3, 28, 29, 76]

end-user network traffic. Also, several studies have used network traffic models in simulation

environments, including [12, 41, 87, 88].

Portions of our work are based on work presented in [44] and [75] and we have chosen

to adopt much of their nomenclature. However, we have attempted to expand upon their

work in several ways. First, the work in [44] is based on packet traces collected from a

campus network. In an attempt to represent more typical end-users, we use data collected

by the NETI@home project. Also, the studies conducted in [44, 75] were specific to TCP

connections on port 80. We, however, model any given TCP or UDP port, as well as all

TCP or UDP traffic aggregated.

8

CHAPTER 3

THE NETI@HOME NETWORK MEASUREMENT

INFRASTRUCTURE

3.1 Description of NETI@home Software

NETI@home is an open-source software package named after the popular SETI@home [2]

software. The NETI@home client is available on the NETI@home website [68] and is de-

signed to be run by almost any client machine connected to the Internet. When run on a

client machine, the NETI@home software reports end-to-end flow summary statistics to a

server at the Georgia Institute of Technology. The statistics collected and the functionality

of the software are further discussed in [69, 72]. Since NETI@home is designed to run on

end-user systems, it provides a unique perspective on the behavior of both end-users and

their systems.

NETI@home is designed to run on almost any end-host machine connected to the Inter-

net, to maximize the volume and variety of measurements gathered. As such, it has been

written for and tested on the Windows, Solaris, Linux, and Mac OS X operating systems.

Our basic approach is to sniff packets sent from and received by the monitored host and

infer performance metrics based on these observed packets. NETI@home is built on top

of the popular libpcap software library [33], the de facto standard cross-platform packet

sniffing library, and is written in the C++ programming language. Further, we run the

NETI@home software in non-promiscuous mode, which ensures that we only observe and

report on traffic specifically addressed to that end-system to eliminate the possibility of

duplicate measurements, to respect the rights and privacy of others, and to guarantee the

collection of end-to-end measurements. One important requirement of the software is that

it be unobtrusive and run quietly in the background with little or no intervention by the

user and use few resources.

9

Currently, all measurements made by NETI@home are passive. The NETI@home soft-

ware collects end-to-end flow summary statistics on the TCP, UDP, ICMP, and IGMP

protocols, as well as their underlying protocols. In addition to these protocol-related mea-

surements, the software also records information about the host on which it is running, such

as the operating system type and version as well as user-supplied geographical location in-

formation. For a more in-depth discussion of the statistics gathered see [72] and for more

up-to-date information see [68].

One key aspect of the NETI@home project is our commitment to user privacy. To

aid in fulfilling this commitment, NETI@home users select a privacy level that determines

what types of data are gathered and what is not reported. There are currently three privacy

settings. Medium, the default setting, records only the network portion of the local, remote,

and multicast IP addresses, as determined by the local netmask. This allows for many

interesting macroscopic studies of the Internet while not compromising the identities of the

end-hosts. The high privacy setting does not record any IP addresses, and the low privacy

setting records the full local, remote, and multicast IP addresses observed. In addition

to the privacy settings, each time a report is sent to the NETI@home server, an identical

local copy is retained so that users can view these contents and verify the operation of

the software. Finally, the open-source nature of the software allows anyone to verify the

functionality of the software.

Once NETI@home analyzes a specified number of flows or a specified amount of time

has passed, the data is compressed using the zlib compression library [43]. NETI@home

clients then report this data via TCP to a DNS name that resolves to a server that resides

at the Georgia Institute of Technology. This server receives and collects all user reports and

is carefully monitored. If needed, and to ensure scalability, we will implement round-robin

DNS to allow multiple servers to simultaneously collect data.

For a project such as NETI@home to be useful there must be a large userbase. To this

end, we have provided some incentive for participation as well as pursued various avenues

of publicity. To encourage users to run the NETI@home client software, we included a

program called NETIMap. When run in conjunction with the NETI@home client software,

10

NETIMap plots the location of the remote host on a global map using CAIDA’s NetGeo

database [51]. In an effort to gain attention, we have pursued other avenues of publicity

in addition to research literature. Examples of such publicity include Wired [18] and the

popular Slashdot website [13, 83]. Also, our software is available on the popular SourceForge

website [77].

As of October 31, 2006, there have been approximately 4,500 active NETI@home users,

sending some 873,000 reports and located in over 40 nations and 91 US ZIP codes. These

users have reported measurements collected from approximately 91 million TCP flows

(transferring approximately 1.23 TB of application data), 175 million UDP flows (trans-

ferring approximately 21.64 GB of application data), 5 million ICMP flows, and 3 million

IGMP flows. The average size of a report from a single user was 6.72 KB, compressed, and

39.75 KB once decompressed. The maximum size of a report from a single user was 1.27

MB, compressed, and 3.43 MB once decompressed. Finally, the total size of the aggregated,

decompressed data collected thus far is approximately 34 GB.

NETI@home users represent a heterogeneous mixture of network users from various

networks and geographical locations using a variety of network connection methods.

The wealth of data collected during this time has led to many interesting observations

and analyses, although there are still many more avenues of investigation to pursue.

The distributed approach to the collection of network measurements was inspired by

the SETI@home project [2], NETI@home’s namesake. Although SETI@home does not deal

with network measurements (it actually looks for signs of intelligent life in the universe), it

was one of the early programs to rely on regular users of the Internet to perform a data-

related function and then report back to a central server. Since its introduction, SETI@home

has become extremely popular. NETI@home hopes to capitalize on this popularity and

novel technique for the collection of network measurements.

NETI@home is copyrighted (copylefted) under the GNU General Public License (GPL).

The GNU GPL specifies that NETI@home and its derivatives will remain free, open-source

software. The GNU GPL was selected so that users and researchers will be able to examine

the source code for NETI@home and make suggestions for improvements, determine exactly

11

how the measurements are collected, and recognize that user privacy is respected. The GNU

GPL further specifies that any software created using code from NETI@home also must be

copyrighted under the GNU GPL. For more information on the GNU GPL see [25].

3.1.1 libpcap

NETI@home uses the open-source libpcap software library [33] to collect packets for anal-

ysis. libpcap is the de facto standard cross-platform packet sniffing library and has a

complementary implementation in Windows, WinPcap [17]. NETI@home sniffs packets in

real-time with little impact on the user’s system. Further, libpcap is used to place the

network interface(s) in non-promiscuous mode.

libpcap is available from their website, located at http://www.tcpdump.org/. Win-

Pcap is available from their website, located at http://www.winpcap.org/.

3.1.2 Privacy Levels

NETI@home users are able to specify a privacy level that determines which statistics are

collected and reported. Currently, there are three privacy settings: high, medium, and low.

At the highest privacy setting, neither the source, destination, nor any multicast IP

addresses are recorded. The high privacy setting provides the maximum respect to the

users’ privacy. However, should this level be selected, information will be lost concerning

the location of nodes on the network and much research potential is also lost.

Medium privacy, the default setting, allows NETI@home to collect all statistics with the

exception of the local, remote, and multicast IP addresses, which are trimmed to contain

only the network portion of their addresses. The network portion is defined by the local

netmask. Thus, the individual computers running NETI@home cannot be identified, but

the overall network to which they belong can be identified. This will aid in various studies,

particularly those related to the topology of the Internet and the performance between the

networks. Users may wish to use this setting if they do not want to be identified by their

IP address or if they do not want the particular systems with which they communicate to

be identified, for instance, certain Web servers.

The low privacy setting allows NETI@home to collect all statistics, including all IP

12

Figure 1: Screenshot of the NETITray application in the Windows taskbar. By right-
clicking on this icon, a user is presented with the NETITray menu, as shown in Figure 2.

Figure 2: Screenshot of the NETITray menu. From this menu, users are able to select be-
tween the Properties window (Figure 3), the About window, an option to halt NETI@home’s
collection of measurements, and an option to close the NETITray application.

addresses. While some users may not want this information collected, NETI@home users

are strongly encouraged to select this privacy setting as it will greatly benefit Internet

research.

The privacy level is specified in a human readable configuration file, neti.conf. This

file resides in the /etc directory on all systems except those running Microsoft Windows

operating systems. On these Windows systems, the user is able to use the NETITray appli-

cation to manipulate the configuration file. The NETITray application is further described

in the next section.

3.1.3 NETITray

For users of the Microsoft Windows operating systems, NETI@home includes a program,

titled NETITray, to ease the configuration of NETI@home. While running NETITray,

Windows users are able to right-click on a NETI@home icon in the tray area of the Windows

taskbar to select between four options: Properties, About, Stop NETI@home, and Hide

NETI@home Controls, as seen in Figure 1 and Figure 2.

By selecting the Properties menu item, users are able to modify several aspects of the

operation of the NETI@home software: the maximum log file size, the privacy level, the

geographical location, the US ZIP, the user’s email address, and the interface on which

NETI@home should monitor. Users are able to select between one KB and ten MB log file

13

Figure 3: Screenshot of the NETITray properties window. From this window, users are
able to select their desired privacy level, maximum log file size, geographical location, and
desired interface to monitor. Further, users can specify a US ZIP code if they are located
within the United States and can specify their email address to receive NETI@home related
mailings.

sizes, which determines the maximum size of the log file stored on the user’s system. The

default log file size is one MB. Users are further able to select between the high, medium,

and low privacy levels. The default privacy setting is the medium privacy level. Users

are also able to select between approximately 260 geographical locations. Finally, the user

is able to select between all available network interfaces to monitor. A screenshot of the

Properties window is shown in Figure 3.

The About menu item displays a caption briefly describing NETI@home including copy-

right and version information.

The Stop NETI@home menu item causes NETI@home to halt its gathering of measure-

ments and close. The NETITray application also closes.

The Hide NETI@home Controls menu item closes the NETITray application without

14

halting the collection of measurements.

3.1.4 Installation

NETI@home is available for many different operating systems, and, as such, has a few

different methods of installation. For users of Microsoft Windows operating systems,

NETI@home is available for installation in the form of a self-extracting executable. This

executable was created using the open-source and robust Nullsoft Scriptable Install System

(NSIS) [85]. For RedHat Linux systems and compatibles, NETI@home is available in the

form of an RPM file. For Macintosh OS X systems, NETI@home is available in the form

of a Mac OS X package. For all other systems, NETI@home is available in tarball format.

Included in the tarball are configuration scripts generated by the GNU autoconf and au-

tomake tools [26], to ease configuration and installation. Typically for these other systems,

one must only execute three commands (configure, make, and make install).

3.1.5 Update Alerts

To ensure that users are aware of new updates, as well as to allow for prompt bug fixes,

implementation of new measurements, and changes in existing measurement collection tech-

niques, the NETI@home client occasionally queries the NETI@home server for the current

version of NETI@home. If the server replies with a current version that is more recent

than the version the user is running, an update alert is generated. If the user is running

NETI@home in a Microsoft Windows operating system, an alert icon is shown by the NETI-

Tray application. For all other operating systems, a text alert is generated in the standard

system log file.

3.1.6 NETILogParse

The NETI@home software package includes the NETILogParse application for users who are

curious or paranoid about the data that is transmitted to the server at the Georgia Institute

of Technology. As binary data is sent to the Georgia Institute of Technology, a duplicate

copy is stored on the user’s machine in the form of a log file. Using the NETILogParse

application, the user is able to view exactly what is contained in this binary data and

15

Figure 4: Screenshot of the NETIMap application. In this screenshot several locations
have already been contacted and graphed. The mouse cursor is also hovering over the
dot representing a connection to http://www.google.com/, displaying the information for
that website. This information includes the name, DNS entry, IP address, city, state, and
country associated with the website, all retrieved from CAIDA’s NetGeo database [51].

further verify that their privacy is protected.

3.1.7 NETIMap

One important goal of the NETI@home project is to have a large installed user base. To en-

courage end-users to run the NETI@home software a program, written in Java, is included.

This program, titled NETIMap, when run in conjunction with the core NETI@home soft-

ware, maps each remote IP address contacted to a graphical display of the world. This plot

allows users to visualize where each remote host with which they communicate is located

geographically. A screenshot of the NETIMap application in use is shown in Figure 4.

To resolve IP addresses into latitude/longitude coordinates, the NetGeo database [51]

from CAIDA is used. It should be noted that this database is not entirely accurate. The

coordinates returned by the NetGeo database should be viewed as approximations and

are based on the records in WHOIS databases, which can be outdated or misleading [51].

Finally, this program is written in Java for maximum portability and for compatibility with

the NetGeo database.

16

3.2 Network Statistics Collected

NETI@home collects many different statistics from end-users, in accordance with CAIDA

specifications [7]. These statistics focus on four transport-layer protocols: the Transmission

Control Protocol (TCP), the User Datagram Protocol (UDP), the Internet Control Message

Protocol (ICMP), and the Internet Group Management Protocol (IGMP), as well as their

underlying network-layer protocols (such as the Internet Protocol, IP). No application layer

data is collected, to maintain user privacy.

The following sections discuss the statistics that are collected by NETI@home. These

sections primarily discuss the statistics gathered by the latest version of NETI@home as of

the time of this writing, version 2.0. For more information about the statistics gathered

by earlier versions of NETI@home, please see [69]. The statistics discussed, as well as

others, including those from previous versions, are also represented in the structures shown

in Appendix A.

3.2.1 Per User Report

The following statistics are those that are collected only once per user report sent to

the NETI@home server. Many of these statistics are not directly related to a particu-

lar transport-layer protocol. However, the collection of these statistics will benefit Internet

research.

3.2.1.1 NETI@home Version

Each host reports the version of NETI@home they are running as they report their statistics.

The version number will aid as protocol statistics are updated, new protocols are added,

and as problems are fixed. The NETI@home version number is reported in the NETI@home

packet header, as shown in Appendix A.

3.2.1.2 Arrival, Start, and Send Times

The Send Time is the time the data was sent to the Georgia Institute of Technology, as

recorded by the user’s system. The Arrival Time is the time the data arrived at the Georgia

Institute of Technology, as recorded by the NETI@home server. By observing both the send

17

and arrival times, major timing discrepancies between the Georgia Institute of Technology

and the user’s system can be accommodated. This will be most beneficial when analyzing

connection start and end times. The Start Time is the time the current report began

recording. These times are precise to the level of detail allowed by libpcap, which, in turn,

is as precise as the user’s system allows. Typically, the level of precision is on the order of

microseconds, with a granularity of milliseconds. The start and send times are reported in

the NETI@home packet header, as shown in Appendix A.

3.2.1.3 Operating System

Each host also reports the operating system they are running as they report their statistics.

Knowledge of a user’s operating system will aid in understanding how each implementation

of the various network protocols vary. For all hosts other than those running Microsoft

operating systems, the GNU autoconf tool [26] is used to determine the operating system

type at build time. For hosts running Microsoft operating systems, special functions pro-

vided with the Windows SDK are used to determine the type and version of the operating

system used. The operating system is reported in the NETI@home packet header, as shown

in Appendix A.

3.2.1.4 Unique Identifier

When NETI@home is first installed on a user’s system the initial install time is recorded.

This initial install time can then be used as a unique identifier, as it is highly unlikely that

two hosts will install NETI@home at the same second. Further, this time can be used to

determine how long a particular user has had NETI@home installed on their system.

3.2.1.5 Privacy Level

In addition to implementing the privacy setting on each IP address collected, the privacy

level is reported in the NETI@home packet header. This allows researchers to determine

quickly and easily what privacy levels are selected by users. Further, this removes any

ambiguity in privacy setting should any additional security approaches be used in the future.

18

3.2.1.6 Geographical Information

NETI@home users are able to voluntarily specify a geographical location. Should the spec-

ified location be in the United States, the user can further specify a US ZIP code in which

they are located. Both of these results are then reported in the NETI@home packet header.

Researchers should keep in mind however, that these are user-supplied details and may

be inaccurate. In several studies presented later, we have augmented the user-supplied

information with other techniques such as reverse DNS.

3.2.1.7 Datalink Type

NETI@home records the datalink type of the interface on which it is monitoring.

3.2.1.8 Packet Counts

Various packet types are also counted for reporting as well as the total number of packets

observed. These packet types include: discarded packets, dropped packets, TCP packets,

UDP packets, ICMP packets, IGMP packets, IPv6 packets, fragmented packets, ARP pack-

ets, IPX packets, EAPOL packets, and “other” packets. Further, a count is maintained for

Wifi management, control, and data packets. So, although NETI@home may not provide

detailed information about some of these packets, a count is maintained for comparison.

3.2.2 All Analyzed Flows

The following sections discuss statistics that are collected for all analyzed flow types: TCP,

UDP, ICMP, and IGMP.

3.2.2.1 IP Addresses

NETI@home is able to collect the local and remote IP addresses for all analyzed packets

directly from the packets.1 IP addresses uniquely identify an Internet host, much like a

telephone number uniquely identifies a telephone customer.

1The IP addresses are only recorded if the user wishes, in accordance with their selected privacy setting

19

3.2.2.2 Local Netmask

NETI@home collects the netmask of the local interface that it is monitoring. This netmask

is used by NETI@home to implement the medium privacy setting, if chosen by the user.

Generally, a netmask is a bitmask used by a system to know which IP addresses belong to

its particular subnetwork.

3.2.2.3 Times

NETI@home records the times that the flows are established and closed, or the time of

the packet in the case of IGMP. These times are precise to the level of detail allowed by

libpcap, which, in turn, is as precise as the user’s system allows. Typically, the level of

precision is on the order of microseconds, with a granularity of milliseconds.

3.2.2.4 Ports

NETI@home is able to collect the local and remote ports for TCP and UDP flows directly

from their respective packets. The collection of ports aids researchers in determining what

application is transmitting the data, such as HTTP (TCP port 80), DNS (TCP and UDP

ports 53), or SSH (TCP port 22) traffic.

3.2.2.5 Checksums

NETI@home is able to determine if an IP, TCP, UDP, ICMP, or IGMP checksum is

recorded and, if so, if it is correct.2 A checksum is used to determine if the packet has

been corrupted during transmission.

3.2.2.6 Number of Fragmented Packets

NETI@home maintains a counter of the number of fragmented packets sent and received

that it observes. Fragmented packets are indicated by either the more fragments flag in the

IP packet header or by a nonzero fragment offset value in the IP packet header. Fragmented

packets are usually a result of a router’s need to fragment a large packet that it can only

handle in smaller pieces.

2This statistic may not work correctly on systems that perform checksum offloading, such as Windows
2000

20

3.2.2.7 Minimum and Maximum TTL Values

NETI@home records the minimum and maximum TTL (time to live) values for both the

local and remote hosts. The TTL values can be directly observed in the IP packet header

and are used to prevent lost packets from continuously being routed around the network.

3.2.2.8 Number of Don’t Fragment Flags

NETI@home maintains a counter of the number of packets sent and received that it observes

with the don’t fragment flag set.

3.2.3 Transmission Control Protocol

TCP is one of the common and widely used protocols on the Internet. It is used for reliable

end-to-end Internet connections for applications such as World Wide Web (WWW) traffic,

secure shell (SSH) traffic, and file transfer protocol (FTP) traffic. A bidirectional TCP

flow is defined by a local IP address and port and a remote IP address and port and

represents a communication channel. The following sections briefly discuss the statistics

that are collected by NETI@home for TCP flows. These statistics are also represented in

the TCP Stats structures shown in Appendix A.

3.2.3.1 Number of Packets

NETI@home maintains a counter of the number of packets that are sent from the host on

which it is running and the number of packets that are received by the host on which it is

running.

3.2.3.2 Number of Bytes

NETI@home maintains a counter of the number of data bytes that are sent from the host

on which it is running and the number of data bytes that are received by the host on which

it is running.

3.2.3.3 Number of Acknowledgment Packets

NETI@home maintains a counter of the number of packets that are sent from the host on

which it is running with the acknowledgment flag set as well as those received.

21

3.2.3.4 Number of Duplicate Acknowledgment Packets

NETI@home determines that duplicate acknowledgment packets have occurred if it sees

two sequential acknowledgment packets with the same acknowledgment number. Duplicate

acknowledgment packets usually occur as a result of loss. The number of duplicate ac-

knowledgment packets sent by the host on which NETI@home is running, as well as those

received, are recorded.

3.2.3.5 Number of Double Duplicate Acknowledgment Packets

NETI@home determines that a double duplicate acknowledgment has occurred if it sees

three sequential acknowledgment packets with the same acknowledgment number. Double

duplicate acknowledgments usually occur as a result of loss. The number of double duplicate

acknowledgment packets sent by the host on which NETI@home is running, as well as those

received, are recorded.

3.2.3.6 Number of Triple Duplicate Acknowledgment Packets

NETI@home determines that a triple duplicate acknowledgment has occurred if it sees

four sequential acknowledgment packets with the same acknowledgment number. Triple

duplicate acknowledgments usually occur as a result of loss and cause TCP to reduce the

amount of information that is sent at a time (by reducing its congestion window). The

number of triple duplicate acknowledgment packets sent by the host on which NETI@home

is running, as well as those received, are recorded.

3.2.3.7 Number Beyond Triple Duplicate Acknowledgment Packets

NETI@home records the number of times it observes sequentially sent and received acknowl-

edgment packets with the same acknowledgment number beyond the above-mentioned triple

duplicate acknowledgment packets.

3.2.3.8 Number of URG Flags

NETI@home maintains a counter of the number of packets sent and received that it observes

with the URG flag set. URG flags are used by TCP to specify that a packet contains urgent

22

data.

3.2.3.9 Number of PUSH Flags

NETI@home maintains a counter of the number of packets sent and received that it observes

with the PUSH flag set. PUSH flags are used by TCP to notify the receiver to “push” all

buffered data to the application.

3.2.3.10 Number of ECN ECHO Flags

NETI@home maintains a counter of the number of packets sent and received that it observes

with the ECN ECHO flag set. ECN is explicit congestion notification, and this flag is used

by TCP to indicate ECN ability and to notify the receiver of congestion.

3.2.3.11 Number of CWR Flags

NETI@home maintains a counter of the number of packets sent and received that it observes

with the CWR flag set. The CWR flag works in conjunction with the ECN ECHO flag.

The CWR flag is set in response to receiving a packet with the ECN ECHO flag set. The

CWR flag indicates to its receiver that appropriate action has been taken in response to

the ECN ECHO flag (and thus congestion).

3.2.3.12 SACK Permitted

NETI@home records if either the local host, remote host, or both the local and remote

hosts indicate SACK permitted. SACK (selective acknowledgment) is a mechanism used

by TCP to acknowledge nonsequential data packets with a single acknowledgment packet.

3.2.3.13 Minimum, Maximum, and Average Advertised Window Sizes

NETI@home records the minimum, maximum, and average advertised window sizes for

both the local and remote hosts. The advertised window size can be directly observed in

the TCP packet header and indicates the amount of data that a host can have outstanding,

that is, unacknowledged, at a given time.

23

3.2.3.14 Number of Packet Retransmissions

NETI@home maintains a counter of the number of packet retransmissions sent and received

that it observes. A retransmission is defined as a packet with a sequence number less than

the highest sequence number that has been observed thus far.

3.2.3.15 Number of Bytes Retransmitted

NETI@home records the number of bytes that are retransmitted, in either direction, as a

result of packet retransmissions.

3.2.3.16 Number of Inactivity Periods

NETI@home maintains a counter of the number of inactivity periods that it observes. An

inactivity period is defined to be a period in which no packets are sent or received for at

least 200 milliseconds. This statistic can be used as a rough estimate of a TCP timeout.

3.2.3.17 Minimum, Maximum, Average, and SYN Round Trip Times

NETI@home records the minimum, maximum, and average round trip times that it esti-

mates. Round trip time estimation is made by keeping a list of all packets for a flow. When

an acknowledgment arrives, if its acknowledgment number is equal to one of the packets’

sequence numbers plus that packet’s length and that packet has not been retransmitted,

the round trip time is estimated to be the difference between the time the acknowledgment

arrives and when the original packet was sent. However, if the original packet had its SYN

flag set (or FIN), then the acknowledgment number should equal its sequence number plus

one. This method for round trip time estimation only works if NETI@home is running on

the host from which data is being sent.

A SYN round trip time is estimated using the TCP three-way handshake. This estimate

is made by determining the amount of time that passes between sending a TCP SYN packet

and receiving the corresponding SYN/ACK packet (for the host establishing the connection)

or the amount of time that passes between sending a TCP SYN/ACK packet and receiving

the corresponding ACK packet (for the host with whom the connection is being established).

This method is based on the work in [35].

24

3.2.3.18 Connection Establishment Method

NETI@home records the method by which the flow was established. From NETI@home’s

perspective, a TCP flow can either be established by receiving a SYN packet, sending a

SYN packet, or observing no SYN packet.

3.2.3.19 Connection Closure Method

NETI@home records the method by which the flow was closed. A flow can either be idle-

closed, RST-closed, or FIN-closed.

A connection is defined to be idle closed if there has been no activity in the flow (no

packets sent or received) for 64 seconds, as per [7].

A connection is defined to be reset closed if a packet is sent or received with the RST

flag set. NETI@home also records which host sent the packet with the RST flag set, either

the local or remote host.

A connection is defined to be FIN closed if a packet is sent or received with the FIN

flag set. NETI@home also records which host sent the packet with the FIN flag set, either

the local or remote host.

3.2.3.20 Number of Packets Received In and Out of Order

NETI@home maintains counters of the number of packets that are received in-order and

out-of-order. A packet is defined to be in-order if its sequence number is equal to the

sum of the sequence number and length of the packet received immediately before it, and

out-of-order otherwise.

3.2.3.21 Maximum Segment Sizes

NETI@home records the local and remote hosts’ maximum segment sizes (MSS), if reported,

for the TCP flow. The MSS is sent from one host to the other at the beginning of the

connection to indicate the maximum size of TCP segment that can be received by the

sending host.

25

3.2.3.22 Minimum, Maximum, and Average Packet Sizes

NETI@home records the minimum, maximum, and average packet sizes observed for packets

sent and received. The packet size can be directly observed in the TCP packet header.

3.2.3.23 Window Scaling

The values of window scaling specified by both the remote and local hosts are recorded.

Window scaling enables a scaling factor to be applied to the advertised window size so that

the values can be larger than the size of the advertised window field alone.

3.2.3.24 Number of Failed Connections

This statistic is not measured directly as is the case with the other statistics, but is rather

inferred. A TCP connection is deemed failed if the TCP three-way handshake procedure

fails.

3.2.4 User Datagram Protocol

UDP is another widely used protocol on the Internet. It is used for unreliable, or timely,

end-to-end Internet connections for applications such as Internet telephony (VoIP) and

multimedia streaming. A bidirectional UDP flow is defined by a local IP address and port

and a remote IP address and port and represents a communication channel. The following

sections briefly discuss the statistics that are collected by NETI@home for UDP flows.

These statistics are also represented in the UDP Stats structures shown in Appendix A.

3.2.4.1 Number of Packets

NETI@home maintains a counter of the number of packets that are sent from the host on

which it is running and the number of packets that are received by the host on which it is

running.

3.2.4.2 Number of Bytes

NETI@home maintains a counter of the number of bytes that are sent from the host on

which it is running and the number of bytes that are received by the host on which it is

running.

26

3.2.4.3 Minimum, Maximum, and Average Packet Sizes

NETI@home records the minimum, maximum, and average packet sizes observed for packets

sent and received. The packet size can be directly observed in the UDP packet header.

3.2.5 Internet Control Message Protocol

ICMP is used for managerial purposes on the Internet. For instance, ICMP messages

are sent when a packet’s TTL value expires, which is useful for tracerouting, as well as

other times such as when an Internet host in unreachable. A bidirectional ICMP flow is

defined by a local IP address and a remote IP address and is closed after an inactivity

period of 64 seconds. The following sections briefly discuss the statistics that are collected

by NETI@home for ICMP flows. These statistics are also represented in the ICMP Stats

structures shown in Appendix A.

3.2.5.1 ICMP Type

NETI@home is able to directly record the ICMP type from the ICMP packet header. This

field indicates what type of ICMP message the packet represents.

3.2.5.2 ICMP Code

NETI@home is able to directly record the ICMP code from the ICMP packet header. Some

ICMP messages (dependent on their ICMP type) have ICMP codes to indicate further

information.

3.2.6 Internet Group Management Protocol

IGMP is used for multicast communications on the Internet. Hosts join a multicast group

and each group is assigned a multicast IP address. Thus, when an Internet host wishes

to contact an entire multicast group, all they must do is send a packet to a multicast IP

address.

NETI@home IGMP statistics are the only statistics not collected on a per-flow basis.

Each IGMP packet is recorded and reported by NETI@home. The following sections briefly

27

discuss the statistics that are collected by NETI@home for IGMP packets. These statistics

are also represented in the IGMP Stats structures shown in Appendix A.

3.2.6.1 Multicast IP Address

NETI@home is able to collect the multicast IP address for IGMP connections directly from

the IGMP packet.3 Multicast IP addresses are assigned to IGMP groups and are used to

address the entire multicast group.

3.2.6.2 IGMP Version

NETI@home is able to directly record the IGMP version from the IGMP packet header.

This field indicates the version of the IGMP protocol used by the packet.

3.2.6.3 IGMP Type

NETI@home is able to directly record the IGMP type from the IGMP packet header. This

field indicates what type of IGMP message the packet represents.

3.2.6.4 Maximum Response Time

NETI@home records the maximum response time for an IGMP packet. The response time is

the amount of time between receiving (or sending) a packet and then sending (or receiving)

a packet.

3.2.6.5 Packet Directionality

NETI@home records the directionality of the IGMP packet, be it from local to remote host

or vice versa.

3.3 Implementation of NETI@home Software

Initially it was thought that NETI@home should function as a Linux kernel module, with

similar device level software written for other systems. However, this route had many dis-

advantages including non-portability, bias introduced by the individual operating systems,

3The IP address is only recorded if the user wishes, in accordance with their selected privacy setting

28

and the difficulty of writing such software. The network sniffer approach was chosen be-

cause it clearly addresses these issues, with minimal effort. Unfortunately, some internal

measurements are lost using the sniffer approach, such as the TCP congestion window sizes.

The libpcap packet sniffing library was chosen due to its popularity, power, availability on

many platforms, and open-source model.

In the hopes of assuring quality and bug-free software, an informal code review was

performed before the initial release of the NETI@home software. This code review consisted

of approximately ten participants, all from the Georgia Institute of Technology School of

Electrical and Computer Engineering. Each participant was given a complete copy of the

NETI@home source code, a description of each file in the code, and a comment sheet. In

addition to the code review, the NETI@home source code is available from the NETI@home

website [68] in the hope that others will review the code and make suggestions.

3.3.1 NETI@home Client

The NETI@home client forms the core of the NETI@home software package. Packets sniffed

by the NETI@home client are sorted into bidirectional flows based on their protocol, source

and destination IP addresses, and source and destination port numbers (for the TCP and

UDP protocols). Once these packets are sorted into their respective flows, the corresponding

measurements are continuously calculated. After approximately 300 flows are fully analyzed

or 24 hours has passed, the data is compressed and transmitted to the Georgia Institute of

Technology (neti.ece.gatech.edu) using TCP.

The NETI@home client is written in the C++ programming language due to C++’s

portability and performance. The C++ Standard Template Library is also used for similar

reasons and to ease implementation. Data compression is performed using the zlib com-

pression library [43]. Portable data types are also defined so that all data collected will be

similar regardless of operating system.

In all versions of the NETI@home client, the file neti.conf is used to specify the

maximum log file size, privacy level, geographical location, US ZIP, and desired monitoring

interface, as well as the user’s email address should they wish to receive NETI@home

29

related mailings. The NETI@home client code reads this file and then uses the settings

appropriately. To implement the medium privacy level, the local netmask is combined with

the IP address using a bitwise AND, thus masking out the host portion of the IP address.

The NETI@home client also includes the NETILogParse application. The NETILog-

Parse application is written in the C++ programming language and is used to parse the log

file on the client’s machine. The results of parsing the log file are printed to the standard

output by NETILogParse.

3.3.2 Windows

The implementation of NETI@home for the Microsoft Windows operating systems was

substantially more difficult than for other operating systems. Instead of using the standard

Berkeley API, all socket programming in the NETI@home client had to be done using the

Winsock library. Further, the in addr struct, used to specify IP addresses, is somewhat

different on Windows systems and the inet aton function, used to convert IP addresses

from dotted decimal notation to binary form, is nonexistent. These problems are but a

handful of those encountered while implementing the NETI@home client for Windows.

To start the NETILogParse and NETIMap applications batch files are written by NSIS.

Thus, when a user selects an application via the Windows Start menu, the corresponding

batch file is executed, which in turn executes the appropriate program. The NETIMap

batch file also checks for the presence of either Sun’s Java or Microsoft’s jview, which are

used to run the NETIMap application, as it is written in Java.

To cause the collection of measurements to begin as soon as possible, regardless of

whether a user is logged in or not, the NETI@home software runs as a Windows service,

much like a daemon on other systems. A screenshot of NETI@home running as a service is

shown in Figure 5.

The NETITray application was developed to aid the manipulation of the neti.conf

file, to remind users that the NETI@home program is running, and to allow them to halt

NETI@home. The NETITray application proved somewhat difficult to implement as it is

designed to only run in the tray area of the Windows taskbar. When a user selects the

30

Figure 5: Screenshot of NETI@home displayed in the Windows Services Control Panel
applet (background). The properties of the NETI@home application are also displayed
(foreground). Running as a Windows service allows NETI@home to start at boot time and
run whether or not a user is logged in on systems running Microsoft Windows.

31

properties window, the current settings are read from the neti.conf file. Should a user

change the settings and select ‘OK,’ the new settings are written to the neti.conf file and

the NETI@home application is notified of the change in settings, to allow the new settings to

be used immediately. Interprocess communication between the NETITray application and

the NETI@home core software is accomplished using Windows events. Two such events are

implemented, one for notifying the core NETI@home software of changes in the neti.conf

file and one for instructing the NETI@home core software to close, when a user selects this

option from the NETITray menu.

Finally, to allow users to install the NETI@home software package for the Windows

operating systems, a self-extracting executable was written using the Nullsoft Scriptable

Install System (NSIS) [85]. Two such executables were written, one for the Windows 95, 98,

and Me operating systems and one for the Windows NT, 2000, and XP operating systems.

Two different executables were required due to the different ways these operating systems

implement services. NSIS allows the Windows registry to be edited, the NETI@home

software to be installed in the proper location, the Add/Remove Programs entries to be

added, and a Start menu folder for NETI@home to be created, among other things. Self-

extracting executables created using NSIS are configured via a powerful scripting language.

3.3.3 Linux, Unix, Mac OS X, and Others

Implementation of NETI@home for Linux, Unix, Mac OS X, and other operating systems

was significantly easier than for the Windows operating systems. NETI@home was written

using POSIX functions and was tested on various systems including RedHat Linux 7.3,

RedHat Linux 8.0, RedHat Linux 9.0, Gentoo Linux, Mac OS X, and Sun’s SunOS 5.8, to

name a few.

On Linux, Unix, Mac OS X, and other systems, NETI@home resides in the /sbin

directory, as only users with root access can start NETI@home to protect user privacy and

because NETI@home is essentially a network sniffer, which could constitute a security issue.

To cause the collection of measurements to begin as soon as possible, regardless of

whether a user is logged in or not, a script was written to allow NETI@home to run as

32

a daemon. This script, usually installed in the /etc/init.d directory structure, allows

NETI@home to run as a daemon and accept the standard start, stop, status, and restart

commands.

For installation and configuration, the GNU autoconf and automake tools [26] were used.

Two files had to be written to tell autoconf and automake exactly how to configure the

installation scripts, configure.in and Makefile.am. The scripts generated also determine

the operating system, CPU type, and vendor of the machine for reporting back to the

Georgia Institute of Technology.

For RedHat Linux systems and compatibles, NETI@home is also available as an RPM

package. To specify how the RPM should be created a specification file, neti-2.0-1.spec,

was written. The resulting RPM file allows users to install NETI@home, query the package,

and uninstall the package all with simple one line commands.

Finally, for users of the Macintosh OS X operating system, NETI@home is available

as a Mac OS X package. Creating the OS X package is similar to creating an RPM as

a configuration file and directory locations for files must be created and specified. The

resulting package allows users to install and uninstall the NETI@home software.

3.3.4 NETI@home Server

To collect the incoming client data at the Georgia Institute of Technology, a simple TCP

server program was written in the C programming language. This server accepts client

connections and then decompresses the received data and writes those data to a file. The C

programming language was chosen due to its performance, especially in the presence of high

amounts of traffic. To validate that the data is in fact NETI@home data, a magicnumber,

4021980, is included in the NETI@home packet header, which is checked by the server. The

structure of the NETI@home packet header is shown in Appendix A. The server accepts

connections on TCP port 557. NETI@home clients contact the server via the DNS name

neti.ece.gatech.edu, which currently points to xferrari.ece.gatech.edu. Should an-

other system be needed, the neti.ece.gatech.edu DNS name can easily be pointed to

another server, providing scalability. The NETI@home server software is designed to be

33

robust and fault-tolerant as it is a crucial element of the data collection process.

In addition to collecting user measurement reports, the NETI@home also collects email

addresses that are voluntarily given by NETI@home users. These reports, formatted as

shown in Appendix A, are not associated with user data. Once collected, these email

addresses are added to a mailing list so that users can be contacted about important infor-

mation relevant to NETI@home.

A final task of the NETI@home server is the handling of update alert requests. Periodi-

cally, the NETI@home client queries the NETI@home server using TCP on port 558. Once a

connection is established, the NETI@home server reports the latest version of NETI@home

to the client, in ASCII format. Thus, users are alerted once a new version of NETI@home

is available and can upgrade if they wish.

Another parsing program was written in the C++ programming language to allow the

data collected by the NETI@home server to be parsed and displayed. This program is nearly

identical to the NETILogParse program described previously, with the exception that the

data parsed is not collected from one user, but from all NETI@home users.

3.3.5 NETIMap

The NETIMap application is written in the Java programming language. The Java program-

ming language was chosen due to its portability, especially for GUI applications. Further,

many Windows systems do not have Sun’s Java Virtual Machine installed, but rather have

Microsoft’s built-in jview. Thus, NETIMap is written to be compatible with Java version

1.1. Although Java version 1.1 is now fairly outdated, it is the latest version supported by

all versions of jview.

To convert IP addresses into latitude/longitude coordinates, the NetGeo database [51]

from CAIDA is used. CAIDA provides a NetGeo client API, which is written in Java, yet

another reason NETIMap is written in Java. NETIMap must be executed while the core

NETI@home software is running as IP addresses are collected by the core software. Once

a remote IP address has been collected by the core software, it is sent to the NETIMap

application via UDP loopback sockets. NETIMap listens for the remote IP addresses on

34

UDP port 1557. Loopback sockets were chosen for interprocess communication because

they are available on all operating systems and work with both C++ (NETI@home core

software) and Java (NETIMap).

3.4 Distribution of NETI@home Software

One major goal of the NETI@home project is to have the NETI@home software installed in

many end-user systems around the world. As the number of users increases, so does the value

of the collected data. NETI@home is currently available for the Linux and Unix operating

systems, in RPM and tarball format, for the Windows operating system in the form of a

self-extracting executable, and for the Macintosh OS X operating system in the form of a

Mac OS X package. All distributions are available from the NETI@home website [68].

Since NETI@home is copyrighted (copylefted) under the GNU General Public License

(GPL) [25], the source code is also available from the NETI@home public website [68]. Being

an open-source project, NETI@home users do not have to worry about the possibility of

so-called “spyware,” as they are free to see exactly how NETI@home works, and make

suggestions if they wish.

3.4.1 SourceForge

A project on the SourceForge website [77] has been created to distribute the NETI@home

software. SourceForge is an excellent resource for open-source software development. Source-

Forge hosts open-source software projects at no charge and provides many services such as

Web space, CVS servers, a Compile Farm to test the compilation of software on several dif-

ferent platforms, and plenty of advertisement. SourceForge’s popularity, and the popularity

of many of the projects that it hosts, help to advertise the other, lesser known projects on

its site. According to [1], SourceForge has a ranking of 86 in terms of traffic for websites

around the world. Thus, by using SourceForge, NETI@home can attract a larger audience

than would be possible otherwise.

Currently, the NETI@home project at SourceForge consists of the current NETI@home

file releases, a CVS repository, and a redirection webpage. SourceForge provides many

powerful mirrors for the possibility of large numbers of simultaneous downloads, with each

35

mirror in a strategic geographic location. The CVS repository allows developers to have

a centralized, archived location for code development. The NETI@home project Web

space, http://neti.sourceforge.net, consists of a redirection page that points to the

Georgia Institute of Technology NETI@home website [68]. SourceForge also provides the

NETI@home project with forums for the reporting of software bugs and other software re-

lated communication. Finally, SourceForge maintains various statistics on the NETI@home

project such as the number of downloads, the amount of development activity, and the

number of webpage views.

3.4.2 neti.gatech.edu

NETI@home’s presence on the World Wide Web is located at http://neti.gatech.edu/.

This website informs visitors of NETI@home’s purpose, the statistics that are collected

by NETI@home, NETI@home’s privacy levels, installation and uninstallation instructions,

research results from data analyses, as well as many other topics of interest to visitors.

From this website, users are able to download the NETI@home software while at the same

time verifying NETI@home’s legitimacy as a Georgia Institute of Technology project. The

Web server which hosts this website is maintained by the Georgia Institute of Technology’s

Office of Information Technology and should be able to handle large volumes of Internet

traffic.

To further verify the legitimacy of the downloaded files, the NETI@home website con-

tains MD5 hashes of each NETI@home file. Thus, if a user suspects that the file they

downloaded is not the official release of NETI@home, they are able to compare the MD5

hash of their file to the official hash on the website.

3.4.3 Publicity

As previously stated, a major goal of the NETI@home project is to have a large installed user

base, to increase the amount and variety of measurements collected. To this end, the pro-

motion of NETI@home is an ongoing undertaking. The first major accomplishment of this

task was the publication of an article describing NETI@home in the 2004 Passive and Active

Measurement Workshop [72]. To attract a more mainstream audience, efforts were made

36

by the Georgia Institute of Technology Office of Institute Communications and Public Af-

fairs to have NETI@home mentioned in several mass-media publications. The response was

quite good, with publicity including Wired [18] and the popular Slashdot website [13, 83],

among others. Continuing efforts are being made toward NETI@home related publications

in other research conferences and journals, as well as mass-media publications.

37

CHAPTER 4

NETWORK SECURITY

This chapter presents our work pertaining to network security. First, flow-based observa-

tions are made comparing data from NETI@home to those collected by the Georgia Tech

Honeynet. Next, the discovery of a potential covert channel of communication used by bot-

nets is discussed. Finally, observations are made about the security implications of running

a custom server, specifically the NETI@home server.

4.1 Flow-Based Observations from NETI@home and Hon-

eynet Data

In [27], the authors present a flow-based comparison of the traffic seen on the Georgia Tech

Honeynet, representing malicious traffic, to the data collected by NETI@home, representing

typical end-user traffic. This comparison was made to aid in understanding what makes

up the majority of the malicious traffic on the Internet. Comparing and contrasting these

results can initiate a better understanding of the malicious traffic seen on the Internet.

4.1.1 Overview

The Internet has grown from the small ARPANET to an unfathomably large network. As

with any new technology, the Internet has grown from its infancy to a stage where security

concerns become a considerable problem. Today’s Internet is plagued with a plethora of

worms, viruses, malware, spam, and otherwise malicious traffic. In this section, we make ob-

servations about end-user Internet activity by comparing honeynet traffic and NETI@home

traffic in order to better understand the security problems of the Internet.

Our strategy for understanding the malicious Internet traffic is a flow-based analysis

of several years of honeynet data and NETI@home data. We study a number of metrics

visually over large timescales and plot both the honeynet dataset and the NETI@home

dataset and then compare the results. Some interesting points include flow activity across

38

the IP address space, port scan activity, new and lingering worm traffic, as well as other

observations. Below we provide some background information on the datasets used.

4.1.1.1 NETI@home Data

Some of the analysis presented in this section requires using only low or medium privacy

statistics and may skew the results slightly, but we feel that our user base is large enough

that such skewing is minimal.

The NETI@home dataset we are analyzing was collected from June 1, 2004 to February

28, 2005 and consists of reports from at least 500 uniquely identifiable users. There are

approximately 31 million TCP flows and 33 million UDP flows in this dataset, constituting

65 GB of transferred network traffic. The remaining flows consist of 600 thousand ICMP

flows and 250 thousand IGMP flows.

4.1.1.2 Georgia Tech Honeynet Data

A honeynet is a network of resources whose value lies in the illicit use of those resources.

All network traffic to and from a honeynet is suspicious, but a small amount of traffic may

be legitimate. However, most of the traffic on a honeynet is malicious in nature.

The Georgia Tech Honeynet Project was launched in the summer of 2002 and imme-

diately began collecting data [24]. The dataset we are using consists of nearly three years

of honeynet traffic with very few service interruption points for maintenance and upgrades.

All network traffic to and from the honeynet has been logged and archived, including the

traffic between the honeypots.

To better understand the conclusions we draw from this data, it is important to un-

derstand the network on which this honeynet has been deployed. There are over 15,000

students enrolled at the Georgia Institute of Technology and approximately 5,000 staff and

faculty employed. The supporting network consists of more than 40,000 networked systems

all within the Georgia Institute of Technology’s IP address space. The honeynet has been

deployed within this IP address space and is accessible from internal machines within the

Georgia Institute of Technology address range as well as external machines.

The honeynet dataset we are analyzing was collected from August 19, 2002 to February

39

28, 2005 and consists of reports from 38 unique IP addresses. There are approximately 2

million TCP flows and 350 thousand UDP flows constituting 7 GB of transferred network

traffic. The remaining flows consist of 40 thousand ICMP flows and no IGMP flows. During

this time period there have been on the order of ten compromises.

4.1.1.3 Observing Malicious Traffic

We visually compare the network flows of a honeynet against the network flows in the

NETI@home data. In particular, we make observations to try and answer these three

questions:

• What are some of the characteristics of the malicious traffic observed on the Internet?

• How much malicious traffic is seen by end-users on the Internet?

• Are there identifiable sources of malicious traffic on the Internet?

4.1.2 Network Flow Analysis

In order to compare the NETI@home dataset with the honeynet dataset, we ran a cus-

tomized version of the NETI@home client on our honeynet data to convert the libpcap [33]

format honeynet dataset to flow-based statistics in the same format as the NETI@home

dataset. This conversion made it possible to directly compare the NETI@home dataset to

the honeynet dataset. In this section, we describe some of the statistics that are provided

by the NETI@home client.

The NETI@home client collects statistics for four common transport layer protocols:

TCP, UDP, ICMP, and IGMP. Much of our analysis focuses on TCP flows since they make

up the majority of the traffic seen in our datasets. However, some data from UDP, ICMP,

and IGMP are also presented in our results.

The analysis technique is centered around the concept of a bidirectional flow, based

on the commonly used 5-tuple, which consists of the source and destination IP addresses,

source and destination ports, and the transport layer protocol. Statistics gathered for each

TCP flow include various time measurements, the number of packets sent and received, the

source and destination parameters, failure flags, window size measurements, and various

40

other information as discussed in Chapter 3. Similar statistics are gathered for the flows

that are of the other types of transport layer protocols. A full discussion of the statistics

gathered can be found in [72].

Each flow has a local IP and port number and a remote IP and port number. Local

refers to the host on which the client is running and collecting statistics from. Remote refers

to the other host in the flow. Therefore, if a NETI@home user with IP x makes a Web

request to a given IP y, then x would be the local IP and y would be the remote IP. To

further clarify, if the same NETI@home user was scanned by IP z, then x would still be the

local IP and z would be the remote IP.

There are several sources of bias in our datasets that may skew our results and are

worth mentioning. First, an insignificant number of NETI@home users had their clocks

misconfigured so we did not include them in the results. Clock synchronization in general

is a source of bias. Second, we did not include all IP results from NETI@home users when

their privacy was set to high because their IP addresses are unknown. Third, the honeynet

dataset is known to be complete; however, the NETI@home dataset relies on the end-users

to run the NETI@home client to monitor their systems and so may have some incomplete

results. Fourth, the NETI@home users must volunteer to run the client, so the data are not

a truly random sample of Internet end-users. Finally, the honeypots are all on the same

network, whereas NETI@home users are spread throughout the Internet.

After collecting the flow statistics for both datasets, we created a framework to analyze

the data. This framework allowed us to plot various graphs for both datasets for comparison.

Below, we present these graphs and discuss our observations.

4.1.3 Data Observations

In order to aid in understanding what makes up the majority of the malicious traffic on the

Internet we have plotted various metrics for both the honeynet dataset and the NETI@home

dataset. The NETI@home dataset represents a mixture of both legitimate/good traffic as

well as malicious traffic. The honeynet dataset represents almost entirely malicious traffic.

Comparing and contrasting these results can initiate a better understanding of the malicious

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

CD
F

Packets per Flow

(a) Honeynet

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

CD
F

Packets per Flow

(b) NETI@home

Figure 6: CDF of the number of packets per TCP flow.

traffic seen on the Internet.

4.1.3.1 Number of Packets Per Flow

We first graphed the cumulative distribution function (CDF) of the number of packets for all

TCP flows for each dataset. The results are shown in Figure 6. First, observe the Honeynet

curve. One can see two distinct inflection points for packet counts equal to one and two.

TCP flows that consist of just one packet most likely contain one SYN packet. It is possible

to have a single packet flow that is not a SYN packet. For instance, an RST or SYN/ACK

packet could be received from a host that received a spoofed connection attempt. Upon

further investigation, we did not observe many flows of this nature.

TCP flows that consist of two packets most likely consist of one SYN and one RST

packet or one SYN and one SYN/ACK packet with no final ACK to complete the three-

way handshake. Again, there are other combinations of TCP flows consisting of just two

packets, but we have not observed many of these combinations. Any TCP flow consisting

of two or fewer packets is a failed connection. On a honeynet, we consider these failed

connections to be malicious probes. Therefore, on our honeynet dataset, about 87% of all

TCP flows can be considered to be probes.

We can contrast the NETI@home CDF with the honeynet CDF and see that about

73% of all TCP flows can be considered failed connections. In the NETI@home dataset,

42

not all of these failed connections are necessarily malicious probe packets as they may be

legitimately failed connections. However, it is interesting to note that in terms of number

of packets per flow the majority of observed TCP flows for end-users are either probes or

failed connections.

4.1.3.2 TCP Port Histogram

To better understand what ports and services malicious flows are targeting, we have gen-

erated a TCP port histogram over time for both the honeynet dataset, as seen in Figure 7,

and the NETI@home dataset, as seen in Figure 8. Each row of points represents one day.

The width of the rows span the local TCP ports from 0 to 1024, which are the well-known

ports [63]. The following formula was used to create the graphs, where i is the intensity

value for a given point in a given row:

i =

0 if c = 0

0.75 ·
(

c

cmax

)0.45

+ 0.25 otherwise
(1)

The maximum number of packets destined to a certain port on one day (i.e., one row

in the figure) is denoted cmax. A port with a packet count of c is then visualized with

intensity i according to the above formula. If c is zero, the intensity is also set to zero

(black). Otherwise, the intensity is chosen to be a value between 25% gray (i = 0.25) to

white (i = 1.0, for the port where c = cmax). The exponent is used to boost dark pixels to

make them more visible. We choose to represent no activity with dark regions because it

provides better contrast for the faint areas of activity.

There are a number of observations to be made from these graphs. Two important

characteristics of the figures to observe are the horizontal lines and the vertical lines. First,

the horizontal lines represent port scans. Port scans are often malicious in nature as an

attacker will generally use a port scan against a target to determine that target’s weaknesses.

In the honeynet data, a number of port scans can be seen over time, but the NETI@home

dataset shows a significantly denser number of port scans seen over time. This appears to be

intuitive as there are an order of magnitude more NETI@home users, which are distributed

across the Internet both topologically and geographically, than there are honeypots in our

43

Port

Da
y

1 1024
08/18/02

02/27/05

1
2

3
4

A
B

C

D

Figure 7: Honeynet TCP port histogram.

44

Port
Da

y
1 1024

04/29/04

02/28/05

Figure 8: NETI@home TCP port histogram.

dataset. Some factors that would decrease the number of port scans seen by NETI@home

end-users include firewalls, NATs, or other similar configurations. Even with these factors,

some NETI@home users are seeing similar port scans as seen on our honeynet.

Another interesting observation is that there are a number of different types of scans

seen. At least four different port scans are easily distinguished visually in the honeynet data,

as denoted by the letters A − D, and similar scans are observed in the NETI@home data.

The most naive port scan will scan all ports (B). The more sophisticated port scans will

skip ports that are of little interest (A, C, and D). There are a number of widely available

port scanning tools, which offer various options for the scanning algorithm [54, 55].

One interesting difference seen in the horizontal lines in the NETI@home dataset is the

stair step lines from approximately port 512 through 1024. Since the user who reported

these flows was within the Georgia Institute of Technology network and used a low privacy

level, we were able to determine what caused the stair step lines. An administrative machine

within the Georgia Institute of Technology network was scanning ports 512 through 1024

over the course of several days. The algorithm consists of dividing the ports into a number

of ranges and scanning one range each day. The source of the scanning was a machine used

to help secure the network and so was altruistic. Therefore, we do not consider these scans

to be malicious in nature.

The second interesting aspect to observe in these graphs is the vertical lines. The

45

vertical lines represent ports that have continual traffic over large time scales. Looking

at the honeynet graph from left to right, the most prominent TCP ports with continual

traffic are 22 (SSH), 80 (WWW), 135 (Microsoft Windows Service), 139 (Microsoft Windows

Service), and 445 (Microsoft Windows Service). Most of these ports have been a target of

one or more worms in the past in addition to legitimate traffic.

There are a number of other vertical lines that are not as prominent in the honeynet

dataset, as seen in Figure 7. The vertical line denoted by ‘1’ is LDAP traffic and was only

seen for a short period of time. The line denoted by ‘2’ represents traffic seen from the real-

time service protocol worm. The traffic at ‘2’ is particularly interesting in the honeynet

dataset. One can notice a bright burst of traffic starting on the worm release date that

continues with intensity over the course of the next several days. After a number of days,

the worm traffic slowly fades out as the infected machines are repaired. However, trailing

effects of the worm can be seen from the point of release until the end of the dataset, which

is over the course of more than a year. Therefore, we see that lingering worm traffic exists

on the Internet for long periods of time after the initial release date.

The line denoted by ‘3’ represents traffic seen from the blaster worm, as seen in Figure 7.

This line also continues for a long period of time, although its characteristics are not as

distinguishable as the real-time service protocol worm. In the honeynet data, it is not clear

why traffic is seen at the line denoted by ‘4’ at port 901. This may be traffic targeting an

old Trojan port, RealSecure’s management port, or Samba/SWAT on RedHat Linux-based

boxes. It is interesting to note that these trends seen in the honeynet data are repeated

in the NETI@home data in addition to the legitimate traffic, as seen in Figure 8, although

it is difficult to distinguish between legitimate traffic and worm traffic in the NETI@home

dataset.

4.1.3.3 IP Address Space

The graphs in Figure 9 show where the traffic is coming from or going to within the entire

IP address space. The IP address is divided into 256 buckets based on the first byte of

the IP address. Figure 9(a) shows the honeynet graph. It is clear that certain portions

46

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

Nu
m

be
r o

f F
lo

ws

IP Address Space

(a) Honeynet (all IP flows)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

Nu
m

be
r o

f F
lo

ws

IP Address Space

(b) NETI@home (all IP flows)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

Nu
m

be
r o

f F
lo

ws

IP Address Space

(c) NETI@home (no TCP port 445 flows)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

Nu
m

be
r o

f F
lo

ws

IP Address Space

(d) NETI@home (only TCP port 445 flows)

Figure 9: IP address space distribution by number of flows.

47

of the address space have seen zero activity on the honeynet. These portions correspond

to unallocated addresses as listed in the WHOIS database. Given that there are no flows

from most of these spaces to the honeynet, we conclude that there are not many spoofed

IP packets coming from unallocated IPs to our honeynet. Further, either the number of

packets with spoofed IP addresses coming to our honeynet is low or they are intelligently

designed.

The NETI@home dataset has an additional baseline of traffic seen across most of the

address range, as seen in Figure 9(b). Further investigation found that this baseline is

caused by one or more NETI@home users sending out a large number of TCP flows to TCP

port 445 over a short period of time. We are unsure how many users were reporting these

results because of privacy settings. Figure 9(d) shows the number of flows to TCP port

445 versus the IP address space. There is clearly a horizontal line across the majority of

the IP address space, which suggests that the NETI@home user or users were randomly

scanning the IP address space on TCP port 445. The nature of this scanning may have

been malicious in nature. For example, the user may have been infected with a worm, as

there have been worms that target TCP port 445. However, we cannot conclude for certain

that the traffic was malicious in nature.

In Figure 9(d), there is a small increase in traffic at bucket number 10. This is probably

due to local 445 traffic on private 10.0.0.0/8 networks. Similarly, there is an increase in

traffic at bucket number 192. This increase would be due to local 445 traffic on private

192.168.0.0/16 networks. The sharp drop in traffic at bucket number 127 is due to the fact

that the 127.0.0.0/8 network is the dedicated localhost network. Finally, the upper ranges

of the IP address space did not see any scans. These ranges contain multicast, experimental,

and other types of allocations.

To better compare the NETI@home data with the honeynet data, we graphed the

NETI@home dataset filtering out traffic to TCP port 445, as seen in Figure 9(c). Com-

paring Figures 9(a) and 9(c), one can notice a striking similarity between the NETI@home

data and the honeynet data. Some differences in the NETI@home data include traffic to

the multicast range and some traffic in the unallocated ranges. However, visually the two

48

(a) Honeynet (b) NETI@home

Figure 10: Remote IP address and contacted local TCP port.

graphs have notably similar shapes.

Based on our observations of the IP traffic seen relative to IP address space, we note a

possible algorithm for detecting suspicious machines. In previous work, it was shown that a

honeynet can be used to find compromised machines on large enterprise networks by marking

any machine on the enterprise that attempts to connect to the honeynet as suspicious [42].

An extension that we draw from these graphs is that any machine attempting to connect

to an unallocated IP address should be considered suspicious and may be compromised.

A graph of the remote IP versus local port for both datasets can be seen in Figure 10.

Again, we only plot the well-known TCP ports. In these graphs, one can see that remote

IPs that appear in the flows are spread across the allocated IP spectrum, and again there

is little traffic in the unallocated ranges, even in the NETI@home data. Based on these

graphs, we observe that scans come from across the entire allocated IP address space.

4.2 Potential Covert Communication

We have previously noted [27] that several NETI@home users appear to be infected with

malware. Further, we have noticed suspicious behavior while studying ICMP traffic. While

not certain, we believe that this behavior may be related to a new type of botnet that uses

ICMP as a covert channel of communication. Specifically, we have noticed that several

ICMP packets contain invalid type and/or code values. Figure 11 shows the percentage of

49

 0

 20

 40

 60

 80

 100

Echo (Anomalous)Echo Reply (Anomalous)

Percentage of Pings that are Anomalous

Figure 11: Anomalous echo by percentage.

observed ECHO REQUEST and ECHO REPLY ICMP packets (used for ping [53]) that

contain anomalous code fields.

Further, we have observed several hosts that exhibit strange behavior after receiving

these anomalous ECHO REQUEST packets. Once received, data is transmitted on TCP

ports 12345, 8081, and 5168 as well as UDP ports 2967 and 40116. After an additional

17 minutes have passed, traffic is present once again on TCP ports 12345, 5168, and 8081.

This process then repeats after 30 minutes have passed since the initial ECHO REQUEST

packet. We have observed this traffic pattern persisting for an entire day at a time.

By design, NETI@home does not collect the data portion of ICMP packets, so a key

element in determining the use of these anomalous packets is missing. However, we have

noted a hypothetical botnet that could be at work. Such a botnet would have no need for

a traditional IP or DNS-based command and control server. The commands could be sent

to large portions of the Internet by sending out ECHO REQUEST (ping) packets, which

are usually deemed harmless. The anomalous code values of these packets could be used to

identify compromised machines and issue further commands. If such a botnet is actually at

work on the Internet, this would represent a more dangerous scenario than those posed by

previous botnets, as this botnet would have no command and control server to disable.

ICMP ECHO REQUEST and ECHO REPLY packets have been used for malicious

purposes previously, and these observations may be a result of similar activity. In [16], the

authors describe a tool, Loki, created to use the data portion of ECHO REQUEST and

ECHO REPLY packets as a covert channel of communication. ECHO packets have also

50

been used previously in the “Ping of Death” [36] and Smurf [9] attacks. Finally, tools such

as [54, 55] use anomalous ECHO code values to determine the operating system of targeted

hosts.

4.3 NETI@home Server Attacks

Finally, running a distributed network monitoring infrastructure has proven to yield some

unexpected observations. For instance, after our initial publicity on Slashdot [13], the

NETI@home server was subjected to several DoS attacks. Fortunately, little to no data was

lost or compromised. However, such attacks demonstrate that higher profile hosts on the

Internet are subject to specialized malicious attacks, even a custom-coded server such as

the NETI@home server.

51

CHAPTER 5

NETWORK BEHAVIOR

The wealth of data collected by NETI@home has led to many interesting observations

and analyses, although there are still many more avenues of investigation to pursue. This

chapter highlights some of the more interesting observations and analyses related to network

behavior that have been made using the NETI@home dataset.

The dataset used in this chapter consists of NETI@home data collected over a one-year

period from October 1, 2004, to September 30, 2005. This dataset includes more than 36

million TCP flows, 93 million UDP flows, 1 million ICMP flows, and 660 thousand IGMP

flows, as well as various other information about their corresponding hosts. Although an

exact calculation is not possible because of privacy settings and dynamically assigned IP

addresses, we estimate that this data was collected by approximately 1,700 users. These

users represent a heterogeneous sampling of Internet users running some eight different

operating systems and reporting from approximately 28 nations and 43 US ZIP codes.

As the Internet consists of a variety of machine types and operating systems, the

NETI@home dataset, with its variety of users and operating systems, will be useful. Effort

is made to determine what effect the differences in machine configurations has on the overall

interactions on the Internet. Further, we study networking protocols to determine how well

they perform on the Internet and how well they are implemented by each operating system.

As each operating system tends to have its own custom network protocol stack, there should

be some differences in the way protocols behave from operating system to operating system.

Also, several protocols provide options that may or may not be implemented and used by

the various operating systems.

52

 1

 10

 100

 1000

 10000

WindowsSolarisMac OS XGNU/LinuxFreeBSD

Us
er

 C
ou

nt

OS Type

Figure 12: NETI@home user count by operating system.

 1
 10

 100
 1000

 10000

W
es

te
rn

 E
ur

op
e

W
es

te
rn

 A
sia

Un
kn

ow
n

So
ut

he
rn

 E
ur

op
e

So
ut

he
rn

 A
sia

So
ut

he
rn

 A
fri

ca
So

ut
h-

Ea
st

er
n

As
ia

So
ut

h
Am

er
ica

No
rth

er
n

Eu
ro

pe
No

rth
er

n
Am

er
ica

Ea
st

er
n

Eu
ro

pe
Ea

st
er

n
As

ia
Ea

st
er

n
Af

ric
a

Ce
nt

ra
l A

m
er

ica
Au

st
ra

lia
 a

nd
 N

ew
 Z

ea
la

nd

Us
er

 C
ou

nt

Region

Figure 13: NETI@home user count by region.

5.1 General Observations

First, general observations have been made about the NETI@home user population and

their use of the Internet. Figure 12 shows the distribution of operating systems run by

NETI@home users. Figure 13 gives the distribution of geographical regions in which users

are located. These are the geographical divisions specified by [79]. User location is deter-

mined by a combination of reverse DNS lookup on the user’s IP address and the geographical

location specified by the user. Finally, Table 1 and Table 2 show some of the more popular

TCP and UDP ports by flow and the applications most commonly associated with these

ports. Table 3 and Table 4 show the popular ports in terms of bytes transferred. In the

future, we hope to determine long-term trends of application popularity.

53

Table 1: Popular TCP ports (by flows)

TCP port number Common use Percentage of TCP flows

80 HTTP (Web) 45.00
445 Win2k+ Server Message Block 26.64
4662 edonkey, emule (P2P) 5.26
6881 bittorrent 3.93
443 HTTPS 1.60
6346 gnutella 1.28
110 POP3 1.17
5678 rrac 1.12
557 NETI@home 0.87
139 netbios and trojans 0.86

Table 2: Popular UDP ports (by flows)

UDP port number Common use Percentage of UDP flows

53 DNS 36.37
162 snmptrap 29.66
137 netbios 12.96
138 netbios 5.05
6881 bittorrent 4.89
161 snmp 4.12
4672 xmule, rfa 3.39
9646 Unknown 2.86
9313 Unknown 2.07
69 tftp 1.59

Table 3: Popular TCP ports (by bytes)

TCP port number Common use Percentage of TCP bytes

80 HTTP (Web) 47.59
6881 bittorrent 14.16
4662 edonkey, emule (P2P) 10.36
3128 squid-http and trojans 1.56
443 HTTPS 1.48
139 netbios and trojans 1.04
22 SSH 0.98
10500 Unknown 0.92
8000 Unknown 0.86
8090 Unknown 0.70

54

Table 4: Popular UDP ports (by bytes)

UDP port number Common use Percentage of UDP bytes

1900 SSDP 22.09
162 snmptrap 19.44
53 DNS 16.07
138 netbios 7.75
137 netbios 5.95
6881 bittorrent 5.01
32770 Filenet NCH 3.39
1234 Unknown 3.39
67 Bootstrap Protocol Server 3.10
68 Bootstrap Protocol Client 3.10

5.2 Network Locality

For most flows, NETI@home records the minimum and maximum TTL values observed

in both directions of a bidirectional flow. In this section, we will use the minimum and

maximum TTL values that originate at the remote end-host of a connection to determine

the network distance between the local and remote end-hosts.

Different implementations of network protocol stacks use different initial TTL values

when sending a packet. Typically, these values are either 255, 128, 64, or 32; however,

it should be noted that any value between 0 and 255 could possibly be used. As a packet

travels from its source host to destination host, each router decrements this TTL value by 1.

Should the TTL value reach 0, the packet will be dropped by the router and an ICMP error

message will be sent to the sending host to indicate the failure. This technique prevents

packets from persisting in the network in erroneous situations such as routing loops [59].

To calculate the hop count, that is, the number of routers transversed, between the

source and destination hosts, we subtract the received TTL value from an assumed initial

TTL value. To determine an estimate of the initial TTL value, we associate the received

TTL value with the initial TTL value that is greater than the received TTL value by the

least amount. For example, if a received TTL value is 110, we assume an initial TTL value

of 128 and estimate the hop count to be 128 − 110 = 18. Similarly, a received TTL value

of 60 would give a hop count of 64 − 60 = 4. We are aware that this approach could lead

55

to erroneous estimates; however, it does provide reasonable results in almost all cases, with

exceptions noted below.

There were a few notable anomalies found while analyzing the NETI@home data using

this method. First, we found an unusually high number of UDP flows (77%) that appeared

to have a hop count of 255 − 150 = 105. Upon further investigation we found that all of

these flows were communications between hosts on a local area network. This led us to

believe that the hop counts for such flows should be very small and we found that several

commercial routers actually use an initial TTL value of 150, thus giving a hop count of

150 − 150 = 0. We then modified our analysis to account for this finding.

Another anomaly found in the NETI@home data was the existence of several flows

(3% of TCP flows) whose minimum and maximum TTL values crossed the initial TTL

boundaries. The vast majority of these flows, when calculating hop counts, showed that

their actual hop counts were not varying, but rather their initial TTL values. Upon further

investigation, we found that 79% of the anomolous TCP flows were HTTP flows, with the

remainder consisting of other high-traffic applications such as HTTPS and POP. Selecting

several of these websites and conducting a manual analysis with Ethereal [14] confirmed

that this behavior is indeed occurring in individual flows. No immediate explanation was

found however, as some flows exhibited varying initial TTLs between TCP connection

establishment packets (SYN / ACK) and all other packets while other flows exhibited

differing behavior on duplicate acknowledgment packets only. Further, some flows exhibited

this differing behavior between HTTP data and all other packets, and finally the remaining

flows exhibited the behavior between seemingly randomly selected packets. One possible

explanation for such behavior is that the user or an application is varying the initial TTL

value during the flow. To investigate this possibility we searched throughout the source code

of the popular open-source Apache Web server [80] and failed to find any code to modify

the initial TTL. While having no confirmable explanation, we believe that such behavior

may be the result of load-balancing by servers, despite the fact that it occurs within a

single flow. Thus, one source of bias in our hop count study, in addition to our assumed

initial TTL values, is the fact that we only record the minimum and maximum TTL values

56

Table 5: Initial TTL values

Protocol 255 150 128 64 32

TCP 4.54% 0.07% 31.36% 63.88% 0.15%

UDP 1.33% 76.90% 17.97% 3.19% 0.61%

ICMP 64.89% 0.03% 13.77% 21.06% 0.25%

IGMP 0.01% 0.00% 0.00% 0.03% 99.96%

Table 6: Hop count variation

Protocol Average hop count variation Flows with variation

TCP 0.15 3.74%

UDP 0.00 0.03%

ICMP 0.02 0.82%

observed. In cases where the initial TTL value is varied, the true minimum and maximum

hop counts may go unrecorded.

After identifying and analyzing these anomalies in our dataset, we calculated hop counts

for all of the observed flows. We found that the average hop counts vary depending upon the

protocol, most likely because some protocols are used more often in a local network setting.

Table 5 summarizes the assumed initial TTL values and their frequency and Figure 14 plots

the cumulative distribution functions of the average hop counts for TCP, UDP, and ICMP.

In addition to calculating the average hop counts observed, we analyzed the variation

of the hop counts for the flows based on the minimum and maximum TTL values observed.

Variations in the hop counts are most likely a result of routing changes over the flow’s

lifetime. Table 6 summarizes the average variations we observed for TCP, UDP, and ICMP

flows as well as the percentages of these flows for which hop count changes occur.

5.3 Frequency and Use of Network Address Translation

and Private IP Addresses

One of the strengths of the NETI@home project is that all connections are observed from

the viewpoint of the end-user. Such a vantage point gives us the unique ability to observe

local network traffic as well as the use of NAT and DHCP, which would otherwise be difficult

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Pr
op

or
tio

n
of

 F
lo

ws

Number of Hops

(a) TCP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Pr
op

or
tio

n
of

 F
lo

ws

Number of Hops

(b) UDP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Pr
op

or
tio

n
of

 F
lo

ws

Number of Hops

(c) ICMP

Figure 14: CDF of average hop counts.

to measure. Exercising this ability, we determine the number of NETI@home users that

utilize NAT as well as DHCP. Further, we observe the number of NETI@home users who

utilize the private IP address space [62] for their local network connection.

When a NETI@home user participates in a network connection we are able to observe

their local IP address, provided their privacy setting allows such monitoring. Further, when

a NETI@home user reports their data to the NETI@home server, we are able to determine

their “external” IP address. Should these IP addresses differ, we determine that either

NAT is being utilized or their address has been reassigned using a technique like that of

DHCP [20]. We find that this occurs for 81.15% of our users.

Investigating the local IP addresses further, we calculated the percentage of NETI@home

users with local IP addresses in the private IP address space. We have found that 77.30%

of NETI@home users utilize an IP address reserved for private use. Thus, the majority of

NETI@home users are members of local area networks, although these local networks may

consist of one machine.

58

For the majority of NETI@home users whose local IP address differs from their external

IP address, the IP address conversion is from an IP address in the private range to an IP

address in the public range. However, we found that 17.01% of NETI@home users actually

convert from one public IP address to another, in effect utilizing two public IP addresses.

While some of these users may have been reassigned a new public IP address with a technique

such as DHCP before reporting to the NETI@home server, there is evidence to suggest that

this is not always the case. As there are a limited number of publicly available IP addresses,

one role of NAT is to allow multiple machines to utilize a single public IP address. As is

evidenced by these numbers, it appears that NAT is in fact helping to preserve public IP

addresses for the time being. However, it also appears that NAT is being used when a

public IP address has already been allocated to the offending host.

5.4 Adoption and Use of Selected Protocol Flags and Op-

tions

NETI@home records several statistics on various flags and options for TCP, UDP, ICMP,

and IGMP as well as their underlying IP headers. In this section we discuss a selection of

these flags and options, namely, TCP selective acknowledgment (SACK) capability, TCP

window scaling capability, the specified TCP maximum segment size (MSS), the TCP urgent

flag, the TCP push flag, and the IP don’t fragment flag.

TCP SACK and TCP window scaling require capability on both sides of the network

connection for functionality [30, 31, 46]. We found that TCP SACK capability is fairly

common in the observed flows, with a significant number of flows having only one end-host

capable. On the other hand, we found that TCP window scaling capability is not very

common, although this option has been described for many years and has become a rate-

limiting factor among TCP flows [89]. It is intuitive that the bandwidth-delay products of

Internet connections will increase over time, thus increasing the need for the adoption of

TCP window scaling. Table 7 summarizes these findings.

We also studied the MSS specified by the observed end-hosts of the TCP flows. We found

that the average MSS specified was 467 and the median MSS was 1460, which corresponds to

59

Table 7: TCP option capability

Protocol option Neither host capable One host capable Both hosts capable

TCP SACK 60.28% 20.92% 18.80%

TCP Window Scaling 96.62% 3.03% 0.35%

the Ethernet MTU. We also observed a minimum MSS of 24 and a maximum of 16856 bytes.

Further, 63.87% of TCP end-hosts either did not explicitly specify a MSS, thus according

to [60] they adopt the default MSS of 536, or their MSS declaration was unobserved.

Finally, a count of the number of TCP flows utilizing the push flag and the urgent flag,

as well as flows utilizing the don’t fragment flag, was made. We found that the push flag is

actually quite common, appearing at least once in 62.59% of the observed TCP flows and

in 20.75% of observed TCP packets. On the other hand, we found the urgent flag to be

extremely rare, only appearing in less than 0.01% of TCP flows. The don’t fragment flag

also appeared quite often, in 33.91% of observed flows. The high occurrence of the don’t

fragment flag is most likely an attempt to avoid the performance penalties of fragmentation

[37, 66].

5.5 Use of the DNS Infrastructure

As can be seen in Table 2 and Table 4, DNS traffic makes up a significant portion of the

traffic observed by NETI@home. Furthermore, DNS is a critical infrastructure to the normal

operation of the Internet. Without DNS, users would be unable to convert the well-known

DNS names into their lesser-known corresponding IP addresses. One critical element to the

operation of the DNS infrastructure are the 13 root DNS servers. Should these servers be

unavailable, either due to intentional attack or misuse and mismanagement, the operation

of the DNS infrastructure and the Internet as a whole would be at serious risk.

Utilizing the unique end-user perspective of NETI@home, we noticed that end-hosts

frequently (approximately 6% of TCP DNS flows) contact the root DNS servers directly,

rather than through their local DNS servers. This behavior is considered to be a bad

practice [40] and is alarming as it can place undue stress on the root DNS servers that are

60

so critical to the current use of the Internet. Unfortunately, NETI@home is only able to

report when users contact the root DNS servers when their privacy is set to low. We also

find that approximately 26% of end-users with low privacy TCP DNS flows contact the root

DNS servers directly. However, upon further investigation, all of these users are located

within the same domain, a sample that cannot be considered representative. Furthermore,

of the low privacy users with UDP DNS flows, we find that a variety of operating systems

are used, including Linux and Windows. Thus, it appears the problem of directly contacting

the root DNS servers cannot be attributed to users of a single operating system.

61

CHAPTER 6

END-USER BEHAVIOR

One of the strengths of NETI@home is its ability to observe network activity from the

perspective of “typical” end-users. This perspective gives us insight into not only what the

end-user sees, but also how the end-user behaves. This perspective is used in this chapter to

understand end-user behavior in a network-independent fashion. It is difficult to conduct

such studies without an infrastructure such as NETI@home in place. Other approaches

that could be used would be to measure from a midpoint in the network, from the server

side, or from a gateway such as those at the edges of campus networks. However, each of

these approaches has problems that are addressed by NETI@home. From the midpoint of

the network, it is difficult to be certain of one’s sample size. Also, from this perspective

end-to-end measurements are lost. From the server side, many end-to-end measurements

can be made. However, the server side perspective depends on the popularity and audience

of that particular server. Further, it is difficult to increase the sample size to many servers,

as many server administrators would be reluctant to give up such sensitive information.

Finally, measurements made from university campus gateways are frequently studied. This

perspective also has its drawbacks. For instance, campus network users cannot be considered

“typical” end-users. Also, from the perspective of the gateway, information about local area

network traffic, caching, and application proxying is also lost. Thus, NETI@home is in the

unique position to provide detailed analyses of end-user habits and behavior.

The work presented in [71] and extended in [70] presents our attempts to analyze

network-independent user behavior using the NETI@home dataset. There, we developed

network-independent traffic models for network user behavior.

62

6.1 Methodology

Two categories of models were created in this study. The first is specific to a TCP or UDP

port, that is, we create a model of client behavior for a given TCP or UDP port. We use the

model created for TCP port 80, the most common port used by World Wide Web servers,

as an example, as it was studied in [44]. However, for variety we also present models for

several other TCP and UDP ports. The second category of model created is an aggregate

of all port-specific models. This model can be likened to a TCP or UDP client model. Such

a model may prove useful for studies that are more generic and are not attempting to study

a particular type of network traffic. All of these models incorporate empirical distributions

directly interpreted from the NETI@home dataset.

The dataset used in this chapter consists of the same NETI@home data analyzed in

Chapter 5. However, in this work, we focus primarily on the TCP and UDP flows.

Several characteristics of TCP and UDP flows were chosen to reflect network-independent

behavior and to wholly represent network client behavior.

The first two aspects we model are empirical distributions of bytes sent and bytes re-

ceived. These values are based only on the payload of the packets and thus do not represent

the sizes of the TCP or UDP headers and their underlying headers or TCP’s flow control

and congestion control algorithms, merely transferred application information. This allows

our models to be used in simulations where variations of TCP or UDP are employed.

The next aspect modeled is user think time. User think time is the term we use for the

amount of time a client waits before initiating another flow. For this aspect, we developed

two empirical distributions. One distribution describes the user think time when consec-

utively accessing a specific destination and the other describes the user think time when

contacting a new destination.

Another aspect modeled is consecutive contacts. Consecutive contacts is the term we use

for the probability that a client will choose to initiate another flow with the last destination

contacted, or the client will choose to initiate a flow with a new destination. For this aspect,

we developed a single empirical distribution.

Finally, the last aspect modeled is contact selection. Contact selection is the term we

63

use for the frequency distribution of contacting specific destinations. This distribution can

be thought of as modeling the popularity of a destination. For this aspect, we developed a

single empirical distribution.

One other aspect that we believe to be worth modeling is related to idle time. For

applications such as World Wide Web transfers, this aspect has little meaning, as Web pages

are simply requested and served. However, for interactive applications such as SSH or telnet,

there are periods of time, during the flow, when there is no data transferred. However, using

the NETI@home data, it is difficult to differentiate between network-dependent flow time

and network-independent flow time. We are aware of work [28, 29] that attempts to capture

this behavior and are considering implementing a similar technique into the NETI@home

client software so that future models can incorporate this aspect of user behavior.

6.2 Experimental Results

From the analysis of the NETI@home dataset described previously, we were able to generate

a set of empirical distributions for each component of our models. To download the complete

set of distributions and for any updates to these distributions please visit http://neti.

gatech.edu/research/user.html.

6.2.1 Bytes Sent

The number of bytes sent varies depending on the port modeled. However, upon inves-

tigation of each modeled port, our findings seem intuitive. The cumulative distribution

functions of bytes sent for various ports, as well as an aggregate of all TCP ports, are

shown in Figure 15.

Figure 15(a) depicts the cumulative distribution function of bytes sent for TCP port

80. Compared with previous studies [44], these results contain many more flows with zero

bytes sent. However, upon investigation it does not appear that these results are due to

a single NETI@home user or are anomalous. The zero-bytes-sent flows typically represent

flows in which the connection failed during the TCP three-way handshake. Although these

flows do not generate much network traffic (usually no more than three packets), they are

significant in terms of numbers of flows and most likely influence a user’s behavior.

64

As can be seen in Figure 15(a), approximately 40% of the flows to TCP port 80 send

little or no data. There are several possible causes for the large number of flows sending little

or no data. First, many of these flows are failed connection attempts. Many NETI@home

users utilize less reliable network connections than the campus network of [44], such as

dial-up or wireless. Also, some of these flows may be to blocked sites. Many browsers

and third-party software block advertisements and some organizations restrict the viewing

of certain websites. Finally, a handful of NETI@home users periodically scan hosts on

the Internet [27]. Considering that these users know that their network connections are

monitored, it is unlikely that this scanning is intentional and may be the result of a virus or

worm. While these results could be considered anomalous, we believe that this does indeed

represent typical end-user behavior as seen on the Internet. Almost all remaining flows send

no more than 10 KB of data to the server. Figure 15(d) shows the cumulative distribution

function of bytes sent for TCP port 80, with the flows sending no data removed.

Other ports that are modeled include TCP port 23 (Figure 15(b)), TCP port 53 (Fig-

ure 15(e)), and UDP port 53 (Figure 15(f)). Each of these ports exhibit slightly different

behavior than TCP port 80. TCP port 23 is the port commonly used for telnet connections.

These interactive flows vary wildly, from sending very little data to a handful of flows that

send large amounts of data. TCP and UDP ports 53 are the ports commonly used for DNS.

Flows to these ports send very little data, as each flow typically represents a single DNS

query, as can be seen in Figure 15(e) and Figure 15(f). Finally, Figure 15(c) depicts the

cumulative distribution function of bytes sent for all TCP ports. This distribution shows

that a large percentage (approximately 70%) of TCP flows send little or no data.

6.2.2 Bytes Received

The number of bytes received by the client is also dependent on the port modeled. The

cumulative distribution functions of bytes received for various ports, as well as an aggregate

of all TCP ports, are shown in Figure 16.

Figure 16(a) depicts the cumulative distribution function of bytes received for TCP

port 80. Compared with [44], we also find that there are many more flows with zero bytes

65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

Pr
op

or
tio

n

Bytes

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
op

or
tio

n

Bytes

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

Pr
op

or
tio

n

Bytes

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

Pr
op

or
tio

n

Bytes

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Pr
op

or
tio

n

Bytes

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Pr
op

or
tio

n

Bytes

(f) UDP port 53

Figure 15: CDF of bytes sent.

66

received. As with our findings for bytes sent, this is most likely due to failed connection

attempts.

The distribution of bytes received for TCP port 80 has a much longer tail than that for

the bytes sent. Approximately 40% of flows with a remote TCP port of 80 receive little

or no data. However, more than 10% of these flows receive greater than 10 KB of data.

Figure 16(d) shows the cumulative distribution function of bytes received for TCP port 80,

with the flows sending no data removed. The removal of these flows appears to remove

many of the flows that received no data, as one would expect.

Other ports that are modeled include TCP port 23 (Figure 16(b)), TCP port 53 (Fig-

ure 16(e)), and UDP port 53 (Figure 16(f)). These ports also exhibit slight differences from

TCP port 80, as with the distributions for bytes sent. The distribution of bytes received for

TCP port 23 shows that many telnet connections receive little data. However, as with TCP

port 80, there are a few connections that receive a large amount of data. The distributions

of bytes received for TCP and UDP ports 53 show a tendency toward very little data being

received. This is due to the fact that most of the flows are responses to single DNS queries,

which agrees with our findings for the complementary bytes sent distributions. Last, Fig-

ure 16(c) shows the cumulative distribution function of bytes received for all TCP ports.

As with the distribution for bytes sent, the majority of TCP flows receive very little data.

6.2.3 User Think Time

The cumulative distribution function for user think time to the same destination is given

in Figure 17 and to differing destinations is given in Figure 18 for various ports as well

as all TCP traffic aggregated. These findings show a tendency toward shorter user think

times than was found in [44] for TCP port 80. We can think of several reasons for this

shortened user think time. First, the World Wide Web has become much more popular

since [44] was published. Also, it is likely that NETI@home captures data from users who

are active more often than it does for inactive users, as many users would simply turn off

their machines while not using them, thus disabling NETI@home’s monitoring. This would

artificially inflate our numbers to show users who appear to be more active and is a source

67

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
op

or
tio

n

Bytes

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
op

or
tio

n

Bytes

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
op

or
tio

n

Bytes

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

Pr
op

or
tio

n

Bytes

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Pr
op

or
tio

n

Bytes

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Pr
op

or
tio

n

Bytes

(f) UDP port 53

Figure 16: CDF of bytes received.

68

of bias.

We chose to model the user think time to the same destination separately from the user

think time to a different destination. Figures 17(a) and 18(a) appear to be similar, how-

ever. We believe that it is still appropriate to model these think times separately, as these

distributions can differ greatly for other TCP or UDP ports, as is shown in Figures 17(b)

and 18(b). These figures show the distributions for think times for TCP port 23, the port

commonly used for telnet.

For connections to TCP port 80, the majority of user think times tends to be less than

1 second. However, for connections to TCP port 23 (telnet), the user think times have a

much heavier tail, with only approximately 40% of flows having think times less than 100

seconds.

In an effort to determine whether the large number of failed connections on TCP port 80

contributes to the shorter think times observed, we show in Figure 17(d) and Figure 18(d)

the think times to the same destination and to differing destinations for TCP port 80

without these failed connections. As can be seen in the figures, the absence of these failed

connections does not seem to have a significant impact on the think time distributions.

Thus, the shortened think times when compared to [44] must be due to changes in browsing

behavior.

Finally, the stair-step patterns of Figure 17(e) and Figure 18(e), which represent TCP

port 53 (DNS), are rather interesting. These stair-stepping patterns are most likely due

to a timeout in queries, with local timeouts at approximately 20 seconds and secondary

timeouts at approximately 60 seconds. Their UDP counterparts on port 53 (Figure 17(f)

and Figure 18(f)) also show timing differences between contacting the same server and

differing servers, although not as pronounced.

6.2.4 Consecutive Contacts

The cumulative distribution functions of consecutive contacts for various ports, as well as

all TCP ports aggregated, are shown in Figure 19. Most of these functions are quite similar,

with a few notable exceptions.

69

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(f) UDP port 53

Figure 17: CDF of user think time to same IPs.

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n

Time (seconds)

(f) UDP port 53

Figure 18: CDF of user think time to differing IPs.

71

In Figure 19(a), we present the cumulative distribution function of consecutive contacts

for TCP port 80. These results also show a tendency toward a lower number of consecutive

contacts than was found in [44]. As can be seen from Figure 19(d), this does not appear

to be a result of failed connection attempts. Possible reasons for this lower number of

consecutive contacts than was found in [44] are that websites tend to incorporate more

objects from other sites such as advertisements as well as the prevalence of caching sites for

many of the popular destinations.

Approximately 80% of the flows to TCP port 80 are not consecutive, that is, the desti-

nation is contacted only once in a row. Further, over 99% of visits to a specific destination

on TCP port 80 lasted for 10 or fewer flows in a row. Therefore, it appears that users tend

to switch Web destinations fairly often, as was noted in [44].

Of note are Figure 19(e) and Figure 19(f), which show much more consecutive contacts.

This appears to be intuitive as most Internet connections would query their local DNS

servers more often than any other.

6.2.5 Contact Selection

Unlike [44], which used a Zipf distribution, we were able to construct a cumulative distribu-

tion function of contact selection because of the wide sampling offered by the NETI@home

dataset. Figure 20 presents the cumulative distribution functions of contact selection for

various ports as well as all TCP ports aggregated. One possible source of inaccuracy for

this aspect is that we are unable to determine if a specific destination uses multiple IP

addresses, thus reducing the frequency of selection a given contact may appear to have.

As can be seen in Figure 20(a), for TCP port 80 servers the distribution of the overall

number of visits by NETI@home users is quite varied and has a heavy tail. Many servers

are only visited a handful of times; however, many other servers tend to be contacted quite

often, with some servers receiving millions of visits over the year studied. This trend appears

to continue for all ports, with Figure 20(e) and Figure 20(f) showing very wide distributions,

which is intuitive considering most DNS servers are local, but there are a handful of root

DNS servers.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

Pr
op

or
tio

n

Number of Contacts

(f) UDP port 53

Figure 19: CDF of number of times an IP is contacted consecutively.

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(a) TCP port 80

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(b) TCP port 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(c) All TCP ports

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(d) TCP port 80 (without flows sending zero
bytes)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(e) TCP port 53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Pr
op

or
tio

n

Number of Visits

(f) UDP port 53

Figure 20: CDF of relative frequency of server visits over a one year period.

74

Web Browser
Client Nodes

First Hop
Switch

Campus
Router

An ISP
Router

Server side
Switch

A Webserver

Figure 21: Network topology used for testing traffic models in simulation.

6.3 Simulation Results

To judge the usefulness of our models, we have incorporated the above derived TCP port

80 traffic models into the GTNetS environment [64]. The GTNetS environment already

has some HTTP traffic models, as described in [44]. We incorporated the models derived

from the analysis of the NETI@home datasets into GTNetS. We consider this approach to

be a better one for traffic generation in network simulations because NETI@home datasets

are more current and continue to be so [72]. An analysis program generates these models

automatically from the NETI@home datasets. The traffic distribution models can then

be easily used by the application layer models that drive a network simulation. In our

simulation experiments, we have concentrated on the World Wide Web traffic and the HTTP

models. Our implementation samples the empirical distributions to determine the particular

values used at a given time. This seems a logical choice since any single distribution doesn’t

seem to fit the complete dataset verifiably. We model the behavior of a Web browser

in GTNetS that sends an HTTP request to a designated Web server asking it to send

a certain length of data that constitutes the response. When the simulation starts, the

browser application chooses a server randomly from a list of target servers. It then chooses

a response size that it wants to obtain from the Web server from the CDF that describes

the bytes received. The size of the HTTP request packet is chosen from the bytes sent CDF

plot. It may request one or more objects within the same TCP connection. Once the Web

browser application has received the appropriate response, it proceeds to select a different

server or the same server for its next request and waits for an amount of time. This amount

of time, which is obtained from the CDF that describes the user think time, depends on

whether the same server is chosen or a different server is chosen.

The network topology for simulations is obtained from [12]. It consists of a large set

75

Table 8: Variation in average and maximum response times when using HTTP traffic
model presented in this chapter (with flows sending zero bytes)

Number of browsers Average
response
time
(seconds)

Maximum
response
time (sec-
onds)

10 0.310057 0.539721
25 0.311265 0.64728
50 0.311925 0.688772
75 0.311463 0.707714
100 0.311327 0.725715
125 0.311567 0.736565
150 0.311746 0.750559

of Web browsers connected via a series of three routers to a Web server, as shown in Fig-

ure 21. We have chosen this to be our baseline topology because we have earlier simulation

experiments conducted using the models and datasets proposed in [12].

The simulation experiment is run using three HTTP traffic models. One of the traffic

models is obtained from the datasets suggested in [44] and [12]. The remaining traffic

models are those obtained from the NETI@home datasets. Intuitively, empirical traffic

models should be more representative of a realistic dataset than statistical traffic generators,

although the former cannot be subjected to extrapolations. All the measurements are the

averages of 1,000 runs of a simulation at a given data point.

Table 8 shows the average and maximum response times for a given number of Web

clients when they request data from a Web server using the traffic models presented in this

chapter. Table 9 shows the average and maximum response times for the same number

of Web browsers when they request data from a Web server using the same traffic models

with the flows sending no data removed. Finally, Table 10 shows the average and maximum

response times for the same number of Web browsers when they request data from a Web

server using the traffic models presented in [44].

It can be seen from the results in Table 8, Table 9, and Table 10 that the maximum

response time for the HTTP traffic model presented in [44] is substantially longer than

the models that are derived from the NETI@home dataset. A careful observation of the

76

Table 9: Variation in average and maximum response times when using HTTP traffic
model presented in this chapter (without flows sending zero bytes)

Number of browsers Average
response
time
(seconds)

Maximum
response
time (sec-
onds)

10 0.34648 0.595165
25 0.346575 0.693681
50 0.346592 0.750871
75 0.346364 0.773511
100 0.346315 0.803677
125 0.346715 0.81649
150 0.346481 0.82985

Table 10: Variation in average and maximum response times when using HTTP traffic
model presented in [44]

Number of browsers Average
response
time
(seconds)

Maximum
response
time (sec-
onds)

10 0.354478 1.25531
25 0.35087 2.12011
50 0.351921 3.52208
75 0.351714 4.39087
100 0.35378 5.53197
125 0.352605 6.48086
150 0.351689 6.84786

77

cumulative distribution functions of the datasets shows that the NETI@home data has a

larger proportion of flow sizes that are very small, both with and without the inclusion of

failed connections. This results in lower load on the Web server and consequently lower

latencies. This is evident in the lower average and maximum response times as the traffic

increases. On the other hand, the traffic model presented in [44] has fewer flow sizes that

are very small. This results in a larger load on the server and on the network as the number

of Web browsers increases. When the number of Web browsers is fairly small, the difference

is not appreciable because the flow size does not influence the network.

The code used for these simulations, as well as the empirical models, are available in the

latest official distribution of the GTNetS environment at http://www.ece.gatech.edu/

research/labs/MANIACS/GTNetS/.

78

CHAPTER 7

DATA DISSEMINATION

This chapter describes our work to further anonymize the NETI@home dataset to prepare

it for public release. We then go on to discuss the public release of the dataset and the tools

used to conduct the analyses in this dissertation, so that researchers around the world can

use the dataset as a basis for studies.

7.1 Anonymization Woes

Despite the previously-mentioned user-selected privacy settings, we have desired to further

anonymize the NETI@home dataset, primarily to protect the privacy of our users. How-

ever, this has been a major roadblock for the past few years. Initially, we were concerned

with attacks that could be performed by a malicious NETI@home user to reverse-map any

anonymization done. For instance, imagine that a malicious NETI@home user wanted to

reverse-map all anonymized IP addresses. In this scenario, all this user must do is scan the

entire IP address range in some fashion, and then report these flows to the NETI@home

server. Once we received the data, we would anonymize it in some fashion and then make it

publicly available. This malicious NETI@home user could then compare their local copy of

the scan to our anonymized copy and reverse-map the entire IP address space. Our initial

solution to this problem was to use separate keys to anonymize the remote IP addresses

and local IP addresses, thus at the least protecting the identities of the NETI@home users.

However, we quickly determined that although unanonymizing the remote IP address space

would be trivial, it would also be trivial to unanonymize the local IP address space, as

a malicious user could simply spoof their local IP address in reports to the NETI@home

server.

We then became aware of the work in [6], which could easily be extended to NETI@home.

The work in [6] showed that it is possible to map the sensors used by the Internet Storm

79

Center [81] with a limited amount of time based on unique packets sent to each viable address

in the IP address space. Such an attack would easily work on the NETI@home infrastructure

as well. So, it seems to us that the only viable option to protect user privacy is to zero out all

IP addresses in the publicly available NETI@home dataset. While unfortunate and a great

loss to the research community, such a decision follows from our commitment to user privacy.

However, we also realized that a mapping attack such as the one presented in [6] would allow

an attacker to determine which IP addresses participate in the NETI@home project. At

first, this seemed to be an insurmountable problem. We were presented with a doomsday

view of not only releasing the NETI@home dataset, but of making any network traces of any

practical utility publicly available. This may be true for projects such as honeynets [61, 78]

or CAIDA’s Internet Telescope [49], but it may actually work in the favor of NETI@home

users. For instance, imagine that the IP addresses participating in the NETI@home project

were discovered and “blacklisted” from the perspective of malicious members of the Internet

community. Although we would lose the ability to track sophisticated attacks, we would

gain a new incentive for hosts to participate in the NETI@home project. By virtue of

participation, the NETI@home users would theoretically be protected from some of the

sophisticated attacks present on the Internet as a whole. Although the publicly available

dataset would unfortunately not contain any IP addresses, we would also gain the practical

inability to determine the remote endpoint of individual flows.

Thus, our current solution is to publicly release the NETI@home dataset in its en-

tirety without any IP addresses. To trusted researchers, we will offer the dataset with

“anonymized” IP addresses on a case-by-case basis. Each trusted user would also have

their custom dataset anonymized with a different key, to minimize the likelihood of mali-

cious collaboration. To implement this anonymization, we use the Crypto-PAn library [21].

Further, separate keys are used for the local IP address space, the remote IP address space,

and the external IP address space. However, to increase the research value of the dataset,

we do not anonymize IP addresses within the private IP address space [62].

Although we have reached a conclusion on how to proceed with the dissemination of the

NETI@home dataset, we have also reached a grim realization on the future of collaboration

80

among the Internet community. It appears from the current research that there is a trade-off

between security and utility as mentioned in [74] when it comes to publicly releasing data.

Our fear is that this realization will lead to a drop in the collaboration of members of the

Internet community, from a point that is already low, especially following such high-profile

embarrassments like the recent America Online search data fiasco [45]. We believe that this

problem is in desperate need of a solution and is a definite area of future work. Further,

our intuition is that this problem has no real solution. Since Internet flows, especially flows

between monitored users and malicious users, are not owned by one end but are shared by

at least both end-hosts, they can always be used as a covert channel of communication.

Thus, to place information about such flows in the view of the public exposes information

about the end-hosts somewhat equal to the utility of the posted information. From this

dismal view it may be that rather than watch the collapse of the sharing of Internet data

we may need to do the opposite. That is, everyone may need to share their data, with those

not sharing running the risk of being the target of the most sophisticated attacks. This

also further reiterates the need for secure communication channels between all end-hosts,

something that researchers have realized from quite some time. We leave the response to

future work and to the Internet community as a whole.

7.2 Data Dissemination

It has been noted that the area of network measurements suffers from the unwillingness of

researchers to share traces among themselves, usually because of privacy concerns. Such

reluctance hampers this field, as results are often not reproducible and conclusions, while

sometimes questioned, often cannot be authenticated [57, 67]. To address this need we plan

to set up a collaboration environment around NETI@home.

As previously mentioned, our current approach to distributing the NETI@home dataset

is twofold. For public release, the dataset has all IP addresses removed. To trusted members

of the research community, we will provide the dataset with IP addresses anonymized in a

prefix-preserving fashion upon request. The public sharing of the NETI@home dataset will

provide researchers around the world a basis for network measurement studies.

81

The public release of the NETI@home dataset is located at http://neti.gatech.edu/

research/data. Each day’s worth of data will be available. Further, we will periodically

send out concise reports based on our own data analyses.

To request an anonymized version of the dataset, please email neti@ece.gatech.edu

and specify your background and the range of dates for the data you would like.

To facilitate further research, we are making all of our own analysis tools available

under an open-source license at http://neti.gatech.edu/research/tools so that other

researchers can use and improve them. We encourage researchers to use this framework

to conduct their own analyses and then provide their experimental code to encourage

community-based analysis and discussion. We believe such a community-based approach

will lead to easily validated experiments as well as the ability to expand upon previous

experiments, fulfilling the need for reproducibility and authentication of results.

Finally, we plan to document our dataset and tools in the DatCat Internet Measure-

ment Data Catalog [67]. DatCat is advocated by CAIDA to be a starting point for data

sharing and allows users to provide metadata about various datasets and experiments. Our

contribution to DatCat will strengthen the availability of the NETI@home dataset and

tools.

82

CHAPTER 8

CONCLUSIONS

This dissertation has introduced a distributed network infrastructure that collects end-to-

end network performance measurements from a variety of end-users around the world. We

have gone on to use this infrastructure to conduct analyses related to network security,

network behavior, and end-user behavior. Below, we present our conclusions and some

areas of future work.

8.1 Conclusions

NETI@home is an open-source software package designed to run on end-user systems

to collect various network performance measurements. All measurements collected by

NETI@home are collected passively, require little or no intervention on the part of the

user, and use relatively few resources. User privacy has been protected via a configurable

privacy level and can be verified by examining the freely available source code or examining

the log file with the included NETILogParse application. These measurements are collected

for some of the most common transport-layer protocols on the Internet: TCP, UDP, ICMP,

and IGMP. The NETIMap application is also included with the NETI@home software pack-

age to further encourage participation in the NETI@home project by users. NETI@home

also runs on many different operating systems to provide maximum availability. Finally,

data gathered by the NETI@home client software is reported to the Georgia Institute of

Technology in a scalable manner, where it is made publicly available to aid researchers in

the on-going quest to improve the global Internet.

We used a number of methods to analyze network flows over time for NETI@home data

and honeynet data. In both datasets, the majority of the TCP flows were failed connections.

In the honeynet dataset, these flows were malicious in nature. The NETI@home dataset

has a smaller percentage of TCP flows that were failed connections, and these flows were

83

not necessarily malicious in nature.

The majority of the traffic seen in the honeynet dataset consists of port scans and

worms. We observed that the outbreak of a new worm will linger on for more than a year

after the release date. Similar patterns were observed in the NETI@home data, although it

is difficult to distinguish between malicious and legitimate traffic.

We also found that port scanning was seen by NETI@home users and honeynet machines

regularly. By using our technique of a TCP port histogram, we were able to observe a port

scan of NETI@home users that slowly scanned the ports over the course of several days.

This particular port scan was found to be non-malicious in nature, as it was a security

scan by the Georgia Institute of Technology on machines within their IP address space.

However, the majority of port scans were most likely malicious in nature and some of the

malicious port scanning patterns observed in the honeynet dataset were also observed in

the NETI@home dataset.

We found that both datasets showed similar flow distributions across the IP address

space. In the NETI@home dataset, however, a small number of users were scanning most of

the IP address space in a random fashion on a TCP port that is the target of recent worms.

This shows that these contacts were likely malicious in nature. Finally, for both datasets,

the source of malicious and legitimate traffic comes from across the entire allocated IP

address space. We did not observe significant malicious traffic or legitimate traffic coming

from the unallocated IP address space. One important conclusion to draw from these

observations is that machines contacting the unallocated regions of the IP address space

should be considered suspicious.

In Chapter 5, we focused on several aspects of networking performance and behavior.

We found that average hop counts vary depending on the transport layer protocol being

used. Further, we have found that hop counts infrequently vary over the lifetime of a flow,

demonstrating that there is routing stability over the lifetime of most network flows.

Next, we observed the frequency of network address translation and its uses in IP address

conversion. Further, we investigated the prevalence of hosts utilizing the private IP address

range. We found that the use of NAT is quite common, as is the use of the private IP

84

address range.

The adoption and use of several protocol options and flags was also investigated. We

found that the use of TCP SACK is common. When TCP flows are unable to utilize

TCP SACK, it is often due to one end-host of the connection, with the other host having

TCP SACK capability, as TCP SACK requires capability in both end-hosts to function. In

contrast, we found that the use of TCP window scaling is not common. The lack of window

scaling support is alarming as the transfer rates of flows may be limited by the maximum

TCP advertised window size of 65,535 bytes. To conclude, the implementation of some

protocol flags and options is drastically behind the specification of these flags and options.

We also found that end-hosts frequently contact the root DNS servers directly, rather

than through their local DNS servers. Such behavior is not due to one particular host or

operating system. This behavior could have severe effects on the performance of these root

servers, which are a critical component to the current operation of the Internet.

In Chapter 6, we presented empirical models of end-user network traffic. There are two

general forms of these models, one form is port-specific for a given TCP or UDP port. The

second form is a generic model for TCP or UDP traffic. These models consist of network-

independent distributions for the number of bytes sent, the number of bytes received, the

user think time to the same destination, the user think time to a different destination, the

number of times a destination will be contacted consecutively, and the popularity of specific

destinations. These distributions differ from previous findings. Our data shows many more

flows sending and receiving zero bytes as well as decreased think times.

The distributions derived are based on the NETI@home dataset and are meant to rep-

resent a heterogeneous sampling of network users. Such a heterogeneous sampling of users

from differing network and geographical locations provides more accurate models for sim-

ulations. As the NETI@home project is ongoing for the foreseeable future, we plan to

continuously update the models. For these updates and to download the complete distri-

butions please visit http://neti.gatech.edu/research/user.html.

Further, we have implemented these models in the GTNetS simulation environment. In

this simulation environment we tested the affect of network traffic on a Web server. These

85

results were then compared to the results from previous models and we found that the

maximum response times have decreased. This decrease is a result of the larger proportion

of flow sizes that are small. The models and code used are available in the latest distribution

of the GTNetS environment at http://www.ece.gatech.edu/research/labs/MANIACS/

GTNetS/.

Finally, in Chapter 7, our techniques for anonymizing the NETI@home data, as well

as our plans for distributing this valuable data were discussed. We have found that the

sharing of network measurement data is threatened, as a result of the tradeoffs between

utility and security. Thus, to protect our users’ privacy with a high degree of certainty,

all IP address information in the NETI@home data is removed in the public release. To

trusted members of the research community, these addresses will be anonymized in a prefix-

preserving fashion. Further, we will also release our analysis tools to foster collaboration

among Internet researchers and to aid in the validation of results. Our hope is that the

NETI@home data will aid in the progress made possible by research.

8.2 Future Work

In this dissertation, we have just begun to scratch the surface of the NETI@home dataset.

This dataset provides a unique perspective into end-user and networking behavior. Further

studies of this dataset are planned and the NETI@home project will continue to collect

data from end-user volunteers for the foreseeable future.

In the future, many more features could be added to NETI@home to aid researchers.

For example, it would be extremely useful to collect the size of the TCP congestion window,

which would allow researchers to monitor the TCP congestion control algorithm. However,

to collect the size of the congestion window, as well as many other statistics, will require

a lower-level application, such as a kernel module, or some other novel technique. Some

other new features under consideration are: collecting the bandwidth available to the end-

user, adding additional transport-layer protocols to the current four that are studied, and

collecting traceroutes from the user to selected destinations. Depending on the user’s privacy

level, the traceroute would either not be recorded, would be trimmed, or it would be fully

86

recorded. The traceroute was not initially included as part of NETI@home because it

might tax users’ systems as well as the network itself. However, using the NETIMap

program, traceroute functionality could be provided. When a user clicks a specific host on

the map, another window would appear and a graphical traceroute would be performed.

Since the traceroute is explicitly performed by the user, it should not be considered taxing

to the user’s system or the network, and it truly represents a passive technique. This

data would also be sent to the server at the Georgia Institute of Technology to add to

the amount of measurements that are collected. Although the DIMES Project [19] and

Traceroute@home [84] also collect traceroute measurements from end-user volunteers on

the Internet, our approach would be a passive one as opposed to their active mapping

approach.

There are a number of future directions to research specific to network security. A

formal statistical correlation between the honeynet data and the NETI@home data could

be performed, to draw more definitive conclusions. There are numerous other network

statistics that can be compared such as TTL values, window sizes, checksum errors, and so

forth. The analysis of these areas of research are left to future work.

Further insight is needed to understand the anomaly observed in initial TTL values.

We propose that this varying of the initial TTL value may be a result of user modifica-

tion, application modification, or load-balancing by servers. We are currently attempting

to contact the administrators of several Web servers that exhibit this behavior for more

information.

Long term studies of the adoption of the previously mentioned protocol flags and options

are an area of future work as there is great concern that many of these options need to be

implemented by the authors of network protocol stacks and then utilized. Further, the

prevalence of NAT and its impact on the provisioning of IP addresses, and on the behavior

of networking in general, deserves greater attention.

Several enhancements to our end-user modeling technique can be made and are areas

of future work. First, it would be useful to model idle times within a flow. As previously

mentioned, certain applications have periods of time where the connection is idle, as in

87

interactive applications. Another enhancement to our model would be to determine if there

is any correlation between the different aspects of our model. For example, in certain appli-

cations the number of bytes sent and the number of bytes received may be highly correlated.

If so, these aspects should most likely be treated as bivariate data. Several enhancements

could also be made to our consecutive contacts and contact selection components. It is

intuitive that once a destination is visited and then left, that the original destination has

a higher likelihood of being visited again. Thus, a model with memory, such as a Markov

model, would be useful. Such a model may also incorporate zero byte flows. That is, if a

connection fails, the likelihood of that connection’s destination of being visited again may

change. Further, our model could be extended to other protocols beyond TCP and UDP.

Currently, NETI@home collects flow summary statistics for TCP, UDP, ICMP, and IGMP,

so ICMP and IGMP models could easily be derived.

The models presented in this dissertation solely focus on network-independent charac-

teristics. It would be useful however to model network-dependent aspects of the global

Internet. Such a model could focus on parameters such as the proliferation of network ad-

dress translation, the topology of the Internet, the number of servers visited overall, latency,

loss, bandwidth, and the locality of network traffic.

The nature of the Internet and its usage is constantly changing. With an infrastructure

such as NETI@home in place, changes to Internet usage, and thus updates to our models,

should be studied. This will not only allow for studies comparing changing trends, but will

ensure the availability of accurate and updated simulation models.

Finally, we have chosen to represent our models in empirical form. Such a form has its

advantages, however analytical models could be developed from this data. These analytical

models may have advantages for scaling, both temporally and spatially.

There are several areas of future work related to the NETI@home project, the most

important of these being participation by the research community. As the data collected by

NETI@home is now publicly available, we would like to foster collaboration on the analysis

of this data. Further, we would like to promote the reuse of tools used to analyze this data

in the hopes of easing development and verification of results.

88

Complementary to analysis, the NETI@home application can and should be upgraded

to include more measurements, especially based on feedback from analyses.

In conclusion, the research possibilities presented by the NETI@home dataset are ex-

tensive and would not be possible were it not for the participation of NETI@home users all

over the world. To them, we owe our thanks.

89

APPENDIX A

NETI@HOME STRUCTURES

This appendix contains the various structures used by NETI@home, both versions 1 and 2,

in RFC format.

====================

NETI@home Header v 1

====================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Magic Number |

+-+

| Version |

+-+

| Send Time |

+-+

| Uncompressed Size |

+-+

| Operating System [0 - 3] |

+-+

| Operating System [4 - 7] |

+-+

| Operating System [8 - 11] |

+-+

| Operating System [12 - 15] |

+-+

| Operating System [16 - 19] |

+-+

| Operating System [20 - 23] |

+-+

| Operating System [24 - 27] |

+-+

| Operating System [28 - 31] |

+-+

| Operating System [32 - 35] |

+-+

| Operating System [36 - 39] |

+-+

| Operating System [40 - 43] |

90

+-+

| Operating System [44 - 47] |

+-+

| Operating System [48 - 49] | Unused |

+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

====================

NETI@home Header v 2

====================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Magic Number |

+-+

| Version |

+-+

| Start Time |

+-+

| Send Time |

+-+

| Uncompressed Size |

+-+

| Unique Identifier (Random) |

+-+

| Privacy Level | Geographic Location |

+-+

| USA Zip |

+-+

| Datalink Type |

+-+

| Total Packet Count |

+-+

| Discarded Packets |

+-+

| Dropped Packets |

+-+

| TCP Packet Count |

+-+

| UDP Packet Count |

+-+

| ICMP Packet Count |

+-+

| IGMP Packet Count |

+-+

91

| IPv6 Packet Count |

+-+

| Fragmented Packets Count |

+-+

| ARP Packet Count |

+-+

| IPX Packet Count |

+-+

| EAPOL Packet Count |

+-+

| Other Packet Count |

+-+

| Wifi Management Packet Count |

+-+

| Wifi Control Packet Count |

+-+

| Wifi Data Packet Count |

+-+

| Operating System [0 - 3] |

+-+

| Operating System [4 - 7] |

+-+

| Operating System [8 - 11] |

+-+

| Operating System [12 - 15] |

+-+

| Operating System [16 - 19] |

+-+

| Operating System [20 - 23] |

+-+

| Operating System [24 - 27] |

+-+

| Operating System [28 - 31] |

+-+

| Operating System [32 - 35] |

+-+

| Operating System [36 - 39] |

+-+

| Operating System [40 - 43] |

+-+

| Operating System [44 - 47] |

+-+

| Operating System [48 - 51] |

+-+

| Operating System [52 - 55] |

+-+

| Operating System [56 - 59] |

+-+

92

| Operating System [60 - 63] |

+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

====================

Email Header v 2

====================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Magic Number |

+-+

| Version |

+-+

| Send Time |

+-+

| Email [0 - 3] |

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

| Email [252 - 255] |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

=======================

NETI@home TCP_Stats v 1

=======================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Established (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Established (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Closed (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Closed (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

93



| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad TCP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Acknowledgment Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Duplicate Acknowledgment Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Triple Duplicate Acknowledgment Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the URG Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the PUSH Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the ECN ECHO Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the CWR Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender SACK Permitted |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver SACK Permitted |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender Maximum Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender Average Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender Minimum Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver Maximum Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver Average Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver Minimum Advertised Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

94



| Sender Minimum TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender Maximum TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver Minimum TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver Maximum TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packet Retransmissions |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Retransmitted |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Timeouts |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Idle Closed |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| RST Closed |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets In Order |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Out-of-Order |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Sender MSS |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Receiver MSS |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

=======================

NETI@home TCP_Stats v 2

=======================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

95



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Remote IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Netmask |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Established (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Established (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Closed (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time Closed (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Port | Remote Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of No TCP Checksums (Truncated) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad TCP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Acknowledgment Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Acknowledgment Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Duplicate Acknowledgment Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Duplicate Acknowledgment Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Double Duplicate Acknowledgment Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Double Duplicate Acknowledgment Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Triple Duplicate Acknowledgment Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Triple Duplicate Acknowledgment Packets Received |

96



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number Beyond Triple Duplicate Acknowledgment Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number Beyond Triple Duplicate Acknowledgment Packets Received|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Packet Size Sent | Minimum Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Packet Size Sent | Average Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Packet Size Sent | Maximum Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the URG Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the URG Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the PUSH Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the PUSH Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the ECN ECHO Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the ECN ECHO Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the CWR Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the CWR Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Min Adv Window | Remote Min Adv Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Ave Adv Window | Remote Ave Adv Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Max Adv Window | Remote Max Adv Window |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Local Win Scale| Rmt Win Scale | UNUSED |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Min TTL | Local Max TTL |Remote Min TTL |Remote Max TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packet Retransmissions Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packet Retransmissions Received |

97



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Retransmitted Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Retransmitted Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Inactivity Periods |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Round Trip Time (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Round Trip Time (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| SYN RTT (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| SYN RTT (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets In Order |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Out-of-Order |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local MSS |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Remote MSS |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Con Estb Method| Closure Method| Local SACKPERM|Remote SACKPERM|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

=======================

NETI@home UDP_Stats v 1

=======================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

98



| Source IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source Port | Destination Port |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad UDP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Packet Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Packet Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Packet Size |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

=======================

NETI@home UDP_Stats v 2

=======================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Remote IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Netmask |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Port | Remote Port |

99



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of No UDP Checksums (Truncated) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad UDP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bytes Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Min TTL | Local Max TTL |Remote Min TTL |Remote Max TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Minimum Packet Size Sent | Minimum Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Average Packet Size Sent | Average Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Packet Size Sent | Maximum Packet Size Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

========================

NETI@home ICMP_Stats v 1

========================

0 1 2 3

100



0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ICMP Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ICMP Code |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad ICMP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

========================

NETI@home ICMP_Stats v 2

========================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Remote IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Netmask |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| ICMP Type | ICMP Code | UNUSED |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of No ICMP Checksums (Truncated) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad ICMP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Sent |

101



+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Sent |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets with the Don’t Fragment Flag Set Received |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Min TTL | Local Max TTL |Remote Min TTL |Remote Max TTL |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

========================

NETI@home IGMP_Stats v 1

========================

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Destination IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Source IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Multicast IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| IGMP Version |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| IGMP Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IGMP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Bad IP Checksums |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Number of Fragmented Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

102



| Number of Packets with the Don’t Fragment Flag Set |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Maximum Response Time |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the First Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Last Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

========================

NETI@home IGMP_Stats v 2

========================

*** Now per Packet***

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Remote IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Multicast IP Address |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Local Netmask |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Version/Type | MRT | TTL |U|U|T|S|G|P|F|D|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Packet (Seconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time of the Packet (Microseconds) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

Version/Type => IGMP Version/Type (8 bits)

MRT => Maximum Response Time (8 bits)

U => Unused

T => Truncated (1 if truncated, 0 if not) --> No Checksum

S => Sender (1 if Local-->Remote, 0 if Remote-->Local)

103



G => IGMP Checksum (1 if bad, 0 if good)

P => IP Checksum (1 if bad, 0 if good)

F => Fragmented (1 if fragmented, 0 if not)

D => Don’t Fragment Flag (1 if don’t fragment, 0 if not)

104



REFERENCES

[1] “Amazon.com: website info: SourceForge.” Available on-line: http://www.alexa.

com/data/details/traffic_details?url=sourceforge.net, October 2006.

[2] Anderson, D. P. and et al., “SETI@home: Search for extraterrestrial intelligence
at home.” Software on-line: http://setiathome.ssl.berkeley.edu, 2003.

[3] Barakat, C., Thiran, P., Iannaccone, G., Diot, C., and Owezarski, P., “Mod-
eling internet backbone traffic at the flow level,” IEEE Transactions on Signal Pro-
cessing – Special Issue on Networking, vol. 51, August 2003.

[4] Barford, P. and Crovella, M., “Generating representative web workloads for net-
work and server performance evaluation,” in ACM SIGMETRICS, 1998.

[5] Barford, P. and Sommers, J., “A comparison of active and passive methods for
measuring packet loss,” October 2002. University of Wisconsin Technical Report.

[6] Bethencourt, J., Franklin, J., and Vernon, M., “Mapping internet sensors with
probe response attacks,” in 14th USENIX Security Symposium, pp. 193–208, August
2005. Awarded Best Paper.

[7] “CAIDA: Preliminary measurement specification for Internet routers.” http://www.

caida.org/tools/measurement/measurementspec/, 2004. The Cooperative Associ-
ation for Internet Data Analysis - CAIDA.

[8] Cao, J., Cleveland, W. S., Gao, Y., Jeffay, K., Smith, F. D., and Weigle,

M. C., “Stochastic models for generating synthetic HTTP source traffic,” in IEEE
INFOCOMM, March 2004.

[9] “Cert advisory ca-1998-01 smurf ip denial-of-service attacks.” http://www.cert.org/

advisories/CA-1998-01.html, January 1998.

[10] Cheng, Y.-C., Holzle, U., Cardwell, N., Savage, S., and Voelker, G. M.,
“Monkey see, monkey do: A tool for TCP tracing and replaying,” in Proceedings of
USENIX Technical Conference, June 2004.

[11] Choi, H.-K. and Limb, J. O., “A behavioral model of web traffic,” in ICNP, 1999.

[12] Christiansen, M., Jeffay, K., Ott, D., and Smith, F. D., “Tuning RED for web
traffic,” IEEE/ACM Transactions on Networking, vol. 9, pp. 249–264, June 2001.

[13] CmdrTaco, “NETI@Home to examine net’s strengths.” On-line: http://slashdot.
org/article.pl?sid=04/04/27/1257211&mode=thread&tid=126&tid=95, April
2004. Slashdot.

[14] Combs, G. and et al., “Ethereal: - a network protocol analyzer.” Software on-line:
http://www.ethereal.com, 2004.

105



[15] Corral, J., Texier, G., and Toutain, L., “End-to-end active measurement archi-
tecture in IP networks (SATURNE),” in PAM2003 - A workshop on Passive and Active
Measurements, April 2003.

[16] daemon9, “Project loki.” http://www.phrack.org/archives/49/P49-06, August
1996.

[17] Degioanni, L., Varenni, G., Risso, F., and Bruno, J., “WinPcap.” Software on-
line: http://www.winpcap.org, 2006.

[18] Delio, M., “NETI to examine net’s strengths.” On-line: http://www.wired.com/

news/technology/0,1282,63180,00.html?tw=wn_techhead_2, April 2004. Wired.

[19] “DIMES – distributed internet measurements and simulations.” http://www.

netdimes.org/, April 2006.

[20] Droms, R., “Dynamic host configuration protocol,” March 1997. RFC 2131.

[21] Fan, J., Xu, J., Ammar, M. H., and Moon, S. B., “Prefix-preserving ip address
anonymization: measurement-based security evaluation and a new cryptography-based
scheme,” Computer Networks, vol. 46, no. 2, pp. 253–272, 2004.

[22] Floyd, S. and Paxson, V., “Difficulties in simulating the internet,” IEEE/ACM
Transactions on Networking, vol. 9, pp. 392–403, August 2001.

[23] Fraleigh, C., Diot, C., Lyles, B., Moon, S., Owezarski, P., Papagiannaki,

D., and Tobagi, F., “Design and deployment of a passive monitoring infrastructure,”
Lecture Notes in Computer Science, vol. 2170, 2001.

[24] “Georgia Tech honeynet research project.” http://www.ece.gatech.edu/research/

labs/nsa/honeynet.shtml, March 2005.

[25] “GNU general public license.” http://www.gnu.org/licenses/, 1991.

[26] “GNU autoconf.” Software on-line: http://www.gnu.org/software/autoconf/,
1998.

[27] Grizzard, J. B., Simpson, Jr., C. R., Krasser, S., Owen, H. L., and Riley,

G. F., “Flow based observations from NETI@home and honeynet data,” in Proceedings
from the sixth IEEE Systems, Man and Cybernetics Information Assurance Workshop,
pp. 244–251, June 2005. Best Paper Nominee.

[28] Hernandez-Campos, F., Smith, F. D., and Jeffay, K., “Generating realistic TCP
workloads,” in Computer Measurement Group International Conference, December
2004.

[29] Hernandez-Campos, F., Nobel, A. B., Smith, F. D., and Jeffay, K., “Un-
derstanding patterns of TCP connection usage with statistical clustering,” in IEEE
MASCOTS, 2005.

[30] Jacobson, V. and Braden, R., “TCP extensions for long-delay paths,” October
1988. RFC 1072.

106



[31] Jacobson, V., Braden, R., and Borman, D., “TCP extensions for high perfor-
mance,” May 1992. RFC 1323.

[32] Jacobson, V., “traceroute.” Software on-line: ftp://ftp.ee.lbl.gov, 1989. Lawrence
Berkeley Laboratory.

[33] Jacobson, V., Leres, C., and McCane, S., “libpcap.” Software on-line: http:

//www.tcpdump.org, 1989. Lawrence Berkeley Laboratory.

[34] Jacobson, V., Leres, C., and McCanne, S., “tcpdump.” Software on-line: http:

//www.tcpdump.org, June 1989. Lawrence Berkeley Laboratory.

[35] Jiang, H. and Dovrolis, C., “Passive estimation of TCP round-trip times,” ACM
Computer Communications Review, vol. 32, July 2002.

[36] Kenney, M., “Ping of death.” http://insecure.org/sploits/ping-o-death.html,
October 1996.

[37] Kent, C. A. and Mogul, J. C., “Fragmentation considered harmful,” in SIGCOMM
’87: Proceedings of the ACM Workshop on Frontiers in Computer Communications
Technology, 1988.

[38] Keys, K., Moore, D., Koga, R., Lagache, E., Tesch, M., and k claffy, “The
architecture of CoralReef: An Internet traffic monitoring software suite,” in PAM2001
- A workshop on Passive and Active Measurements, CAIDA, April 2001. http://www.
caida.org/tools/measurement/coralreef/.

[39] Kienzle, D. M. and Elder, M. C., “Recent worms: a survey and trends,” in
WORM’03: Proceedings of the 2003 ACM workshop on Rapid Malcode, pp. 1–10, ACM
Press, 2003.

[40] Larson, M. and Barber, P., “Observed DNS resolution misbehavior,” October 2006.
RFC 4697.

[41] Le, L., Aikat, J., Jeffay, K., and Smith, F. D., “The effects of active queue
management on web performance,” in ACM SIGCOMM, pp. 265–276, August 2003.

[42] Levine, J., LaBella, R., Owen, H., Contis, D., and Culver, B., “The use of
honeynets to detect exploited systems across large enterprise networks,” in Proceedings
of 4th IEEE Information Assurance Workshop, (West Point, NY), June 2003.

[43] loup Gailly, J. and Adler, M., “zlib compression/decompression library.” Software
on-line: http://www.gzip.org/zlib/, 1995.

[44] Mah, B. A., “An empirical model of HTTP network traffic,” in IEEE INFOCOMM,
April 1997.

[45] Martin, K., “AOL search data identified individuals.” http://www.securityfocus.

com/brief/277, August 2006.

[46] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A., “TCP selective acknowl-
edgment options,” October 1996. RFC 2018.

107



[47] Mathis, M., Semke, J., Mahdavi, J., and Ott, T., “The macroscopic behavior
of the TCP congestion avoidance algorithm,” SIGCOMM Computer Communications
Review, vol. 27, no. 3, 1997.

[48] Mochalski, K. and Irmscher, K., “On the use of passive network measurements
for modeling the Internet,” in KiVS, 2003.

[49] Moore, D., “Network telescopes: Observing small or distant security events.” http:

//www.caida.org/outreach/presentations/2002/usenix_sec/, August 2002. In-
vited Presentation at the 11th USENIX Security Symposium (SEC 02).

[50] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., and Weaver,

N., “Inside the slammer worm,” Security & Privacy Magazine, vol. 1, no. 4, pp. 33–39,
2003.

[51] Moore, D., Periakaruppan, R., Donohoe, J., and kc claffy, “Where in the
world is netgeo.caida.org?,” in INET 2000, June 2000.

[52] Murray, M. and kc claffy, “Measuring the immeasurable: Global Internet mea-
surement infrastructure,” in PAM2001 - A workshop on Passive and Active Measure-
ments, April 2001.

[53] Muuss, M., “ping.” Software on-line: http://ftp.arl.mil/ mike/ping.html, 1983. Bal-
listic Research Lab.

[54] “nessus.” http://www.nessus.org/, March 2005.

[55] “nmap.” http://www.insecure.org/nmap/, March 2005.

[56] Padhye, J., Firoiu, V., Towsley, D., and Kurose, J., “Modeling TCP through-
put: A simple model and its empirical validation,” in SIGCOMM ’98: Proceedings of
the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, 1998.

[57] Paxson, V., “Strategies for sound internet measurement,” in IMC ’04: Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement, 2004.

[58] Paxson, V., Mahdavi, J., Adams, A., and Mathis, M., “An architecture for large-
scale Internet measurement,” IEEE Communications, vol. 36, pp. 48–54, August 1998.

[59] Postel, J., “Internet protocol,” September 1981. RFC 791.

[60] Postel, J., “The TCP maximum segment size and related topics,” November 1983.
RFC 879.

[61] Provos, N., “A virtual honeypot framework,” in 13th USENIX Security Symposium,
August 2004.

[62] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. J., and Lear,

E., “Address allocation for private internets,” February 1996. RFC 1918.

[63] Reynolds, J. and Postel, J., “Assigned numbers,” October 1994. RFC 1700.

108



[64] Riley, G. F., “The Georgia Tech Network Simulator,” in Proceedings of the ACM
SIGCOMM workshop on Models, methods and tools for reproducible network research,
pp. 5–12, 2003.

[65] Shannon, C. and Moore, D., “The spread of the witty worm,” Security & Privacy
Magazine, vol. 2, no. 4, pp. 46–50, 2004.

[66] Shannon, C., Moore, D., and Claffy, K. C., “Beyond folklore: Observations on
fragmented traffic,” IEEE/ACM Transactions on Networking, vol. 10, December 2002.

[67] Shannon, C., Moore, D., Keys, K., Fomenkov, M., Huffaker, B., and
k claffy, “The internet measurement data catalog,” SIGCOMM Computer Com-
munications Review, vol. 35, no. 5, 2005.

[68] Simpson, Jr., C. R., “NETI@home.” Software on-line: http://neti.gatech.edu,
2003. Georgia Institute of Technology.

[69] Simpson, Jr., C. R., “A distributed approach to passively gathering end-to-end net-
work performance measurements,” Master’s thesis, Georgia Institute of Technology,
May 2004.

[70] Simpson, Jr., C. R., Reddy, D., and Riley, G. F., “Empirical models of end-
user network behavior from NETI@home data analysis,” Simulation: Transactions
of the Society for Modeling and Simulation International. Invited Paper – Awaiting
Publication.

[71] Simpson, Jr., C. R., Reddy, D., and Riley, G. F., “Empirical models of
TCP and UDP end-user network traffic from NETI@home data analysis,” in 20th
ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation
(PADS 2006), pp. 166–174, May 2006. Best Paper Nominee.

[72] Simpson, Jr., C. R. and Riley, G. F., “NETI@home: A distributed approach to
collecting end-to-end network performance measurements,” in PAM2004 - A workshop
on Passive and Active Measurements, April 2004.

[73] “skitter.” http://www.caida.org/tools/measurement/skitter/, 2006. CAIDA.

[74] Slagell, A. and Yurcik, W., “Sharing computer network logs for security and
privacy: A motivation for new methodologies of anonymization,” in SECOVAL: The
Workshop on the Value of Security through Collaboration, held in conjunction with
SecureComm, September 2005.

[75] Smith, F. D., Hernandez-Campos, F., Jeffay, K., and Ott, D., “What TCP/IP
protocol headers can tell us about the web,” in ACM SIGMETRICS, pp. 245–256,
2001.

[76] Sommers, J., Kim, H., and Barford, P., “Harpoon: A flow-level traffic generator
for router and network tests,” in ACM SIGMETRICS, June 2004.

[77] “SourceForge.” http://sourceforge.net/, April 2006.

[78] Spitzner, L., “Know your enemy: Honeynets.” http://www.honeynet.org/papers/

honeynet/. Honeynet Project.

109



[79] “Standard country and area codes classifications (M49).” http://unstats.un.org/

unsd/methods/m49/m49regin.htm, July 2006. United Nations Statistics Division.

[80] The Apache Software Foundation, “Apache.” Software on-line: http://www.

apache.org, 2005.

[81] “The SANS internet storm center.” http://isc.sans.org.

[82] Thompson, K., Miller, G. J., and Wilder, R., “Wide-area Internet traffic patterns
and characteristics (extended version),” IEEE Network, 1997.

[83] timothy, “NETI@home data analyzed.” On-line: http://it.slashdot.org/it/05/
04/25/1710223.shtml?tid=172&tid=95&tid=218, April 2005. Slashdot.

[84] “traceroute@home.” http://www.tracerouteathome.net/, April 2006.

[85] Verburg, J., “Nullsoft scriptable install system.” Software on-line: http://nsis.

sourceforge.net/, 2003.

[86] Weaver, N., Paxson, V., Staniford, S., and Cunningham, R., “A taxonomy of
computer worms,” in WORM’03: Proceedings of the 2003 ACM workshop on Rapid
Malcode, pp. 11–18, ACM Press, 2003.

[87] Weigle, M., Jeffay, K., and Smith, F. D., “Delay-based early congestion detection
and adaptation in TCP: Impact on web performance,” ACM Computer Communica-
tions Review, vol. 28, pp. 837–850, May 2005.

[88] Xu, J. and Lee, W., “Sustaining availability of web services under distributed denial
of service attacks,” IEEE Transactions on Computers, vol. 52, pp. 195–208, February
2003.

[89] Zhang, Y., Breslau, L., Paxson, V., and Shenker, S., “On the characteristics
and origins of internet flow rates,” in ACM SIGCOMM, August 2002.

110



VITA

Charles Robert Simpson, Jr. (“Robby”) was born in Spartanburg, South Carolina in 1980.

He received his B.S. in Computer Engineering from Clemson University in 2002. He joined

the School of Electrical and Computer Engineering at the Georgia Institute of Technology

in 2002 from which he received an M.S.E.C.E. in 2004. He completed his studies at the

Georgia Institute of Technology when he graduated with a Ph.D. in 2006. His research

interests include network measurements, networking protocols, network security, network

simulations, computer architecture, and software engineering.

111


